

 MADHAVI PINGILI 1

SOFTWARE PROJECT MANAGEMENT

UNIT - 1

Conventional Software Management

The best thing about software is its flexibility: It can be programmed to do almost he worst thing about

software is its flexibility: The “almost anything” characteristic has made it difficult to plan, monitor, and control

software development. In the mid-1990s, three important analyses were performed on the software engineering

industry.

All three analyses given the same general conclusion:

“The success rate for software projects is very low”.

They summarized as follows:

1. Software development is still highly unpredictable. Only 10% of software projects are delivered successfully

Within initial budget and scheduled time.

2. Management discipline is more differentiator in success or failure than are technology advances.

3. The level of software scrap and rework is indicative of an immature process.

Software management process framework:

WATERFALL MODEL

1.It is the baseline process for most conventional software projects have used.

We can examine this model in two ways:

i. IN THEORY

ii. IN PRACTICE

IN THEORY:

In 1970, Winston Royce presented a paper called “Managing the Development of Large Scale

Software Systems” at IEEE WESCON.

Where he made three primary points:

1. There are two essential steps common to the development of computer programs:

- Analysis

- coding

2. In order to manage and control all of the intellectual freedom associated with software development one should

follow

The following steps:

 MADHAVI PINGILI 2

1. System requirements definition

2. Software requirements definition

3. Program design and testing

These steps addition to the analysis and coding steps

a) Since the testing phase is at the end of the development cycle in the waterfall model, it may be risky and

invites failure. So we need to do either the requirements must be modified or a substantial design changes is

warranted by breaking the software in to different pieces.

There are five improvements to the basic waterfall model that would eliminate most of the development

risks are as follows:

b) Complete program design before analysis and coding begin (program design comes first):

- By this technique, the program designer gives surety that the software will not fail because of storage,

timing, and data fluctuations.

- Begin the design process with program designer, not the analyst or programmers.

- Write an overview document that is understandable, informative, and current so that every worker on the

project can gain an elemental understanding of the system.

c) Maintain current and complete documentation (Document the design):

- It is necessary to provide a lot of documentation on most software programs.

- Due to this, helps to support later modifications by a separate test team, a separate maintenance team, and

operations personnel who are not software literate.

c) Do the job twice, if possible (Do it twice):

- If a computer program is developed for the first time, arrange matters so that the version finally delivered

to the customer for operational deployment is actually the second version insofar as critical design/operations are

concerned.

- “Do it N times” approach is the principle of modern-day iterative development.

 d) Plan, control, and monitor testing:

- The biggest user of project resources is the test phase. This is the phase of greatest risk in terms of cost and

schedule.

- In order to carryout proper testing the following things to be done:

 Employ a team of test specialists who were not responsible for the original design.

 Employ visual inspections to spot the obvious errors like dropped minus signs, missing factors of two,

jumps to wrong addresses.

 Test every logic phase.

 iv) Employ the final checkout on the target computer.

e) Involve the customer:

- It is important to involve the customer in a formal way so that he has committed himself at earlier points before

final delivery by conducting some reviews such as,

 Preliminary software review during preliminary program design step.

 Critical software review during program design.

 Final software acceptance review following testing.

 MADHAVI PINGILI 3

IN PRACTICE:

- Whatever the advices that are given by the software developers and the theory behind the waterfall model, some

Software projects still practice the conventional software management approach.

Projects intended for trouble frequently exhibit the following symptoms:

I) Protracted (delayed) integration

- In the conventional model, the entire system was designed on paper, then implemented all at once, then

integrated. Only at the end of this process was it possible to perform system testing to verify that the fundamental

architecture was sound.

- Here the testing activities consume 40% or more life-cycle resources.

ACTIVITY COST

 Management 5%

 Requirements 5%

 Design 10%

 Code and unit testing 30%

 Integration and test 40%

 Deployment 5%

 Environment 5%

ii) Late Risk Resolution

- A serious issues associated with the waterfall life cycle was the lack of early risk resolution. The risk profile of

a waterfall model is,

- It includes four distinct periods of risk exposure, where risk is defined as “the probability of missing a cost,

schedule, feature, or quality goal”.

iii) Requirements-Driven Functional Decomposition

-Traditionally, the software development process has been requirement-driven: An attempt is made to provide a

Precise requirements definition and then to implement exactly those requirements.

-This approach depends on specifying requirements completely and clearly before other development activities

begin.

- It frankly treats all requirements as equally important.

- Specification of requirements is a difficult and important part of the software development process.

iv) Adversarial Stakeholder Relationships

The following sequence of events was typical for most contractual software efforts:

-The contractor prepared a draft contact-deliverable document that captured an intermediate artifact and

delivered it to the customer for approval.

-The customer was expected to provide comments (within 15 to 30 days)

-The contractor integrated these comments and submitted a final version for approval (within 15 to 30 days)

Project Stakeholders:

- Stakeholders are the people involved in or affected by project activities

- Stakeholders include the project sponsor and project team

 MADHAVI PINGILI 4

- support staff

- customers

- users

- suppliers

- opponents to the project

v) Focus on Documents and Review Meetings

- The conventional process focused on various documents that attempted to describe the software product.

- Contractors produce literally tons of paper to meet milestones and demonstrate progress to stakeholders, rather

than spend their energy on tasks that would reduce risk and produce quality software.

- Most design reviews resulted in low engineering and high cost in terms of the effort and schedule involved in

their preparation and conduct.

CONVENTIONAL SOFTWARE MANAGEMENT PERFORMANCE

Barry Boehm’s Top 10 “Industrial Software Metrics”:

1) Finding and fixing a software problem after delivery costs 100 times more than finding and fixing the problem

in early design phases.

2) You can compress software development schedules 25% of nominal (small), but no more.

3) For every $1 you spend on development, you will spend $2 on maintenance.

4) Software development and maintenance costs are primarily a function of the number of source lines of code.

5) Variations among people account for the biggest difference in software productivity.

6) The overall ratio of software to hardware costs is still growing. In 1955 it was 15:85; in 1985, 85:15.

7) Only about 15% of software development effort is devoted to programming.

8) Software systems and products typically cost 3 times as much per SLOC as individual software programs.

Software-system products cost 9 times as much.

9) Walkthroughs catch 60% of the errors.

10) 80% of the contribution comes from 20% of the contributors.

- 80% of the engineering is consumed by 20% of the requirements.

- 80% of the software cost is consumed by 20% of the components.

- 80% of the errors are caused by 20% of the components.

- 80% of the software scrap and rework is caused by 20% of the errors.

- 80% of the resources are consumed by 20% of the components.

- 80% of the engineering is accomplished by 20% of the tools.

- 80% of the progress is made by 20% of the people.

Part-2

Evolution of Software Economics

Economics means System of interrelationship of money, industry and employment.

SOFTWARE ECONOMICS:

The cost of the software can be estimated by considering the following things as parameters to a

function.

1) Size: Which is measured in terms of the number of Source Lines of Code or the number of function points

required to develop the required functionality?

2) Process: Used to produce the end product, in particular the ability of the process is to avoid nonvalue adding

activities (rework, bureaucratic delays, and communications overhead).

3) Personnel: The capabilities of software engineering personnel, and particularly their experience with the

computer science issues and the application domain issues of the project.

 MADHAVI PINGILI 5

4) Environment: Which is made up of the tools and techniques available to support efficient software

development and to automate the process?

5) Quality: It includes its features, performance, reliability, and flexibility. The relationship among these

parameters and estimated cost can be calculated by using,

Effort = (Personnel) (Environment) (Quality) (SizeProcess)

One important aspect of software economics is that the relationship between effort and size

Exhibits a diseconomy of scale and is the result of the process exponent being greater than 1.0.

- Converse to most manufacturing processes, the more software you build, the more expensive it is per unit item.

- There are three generations of basic technology advancement in tools, components, and processes are available.

1) Conventional: 1960 and 1970, Craftsmanship. Organizations used custom tools, custom

Processes, and virtually all custom components built in primitive languages. Project performance was highly

predictable.

2) Transition: 1980 and 1990, software engineering. Organizations used more-repeatable processes and off-the-

shelf tools, and mostly (>70%) custom components built in higher level languages. Some of the components

(<30%) were available as commercial products like, OS, DBMS, Networking and GUI.

3) Modern practices: 2000 and later, software production.

- 70% component-based,

- 30% custom

-

Conventional Transition Modern Practices

- 1960s – 1970s - 1980s –1990s - 2000 and on

- Waterfall model - Process improvement - Iterative development

- Functional design - Encapsulation - based - Component-based

- Diseconomy of scale- Diseconomy of scale- ROI

Environments /tools:

Custom Off-the-shelf, separate Off-the-shelf, Integrated

Size:

- 100% custom 30% component-based 70% component-based

- 70% custom 30% custom

Process:

- Ad hoc Repeatable Managed/measured

Typical Project Performance:

- Always: Infrequently: Usually:

- Over budget On budget On budget

- Over schedule On schedule On schedule

What Does Return On Investment - ROI Mean?

A performance measure used to evaluate the efficiency of an investment or to compare the

Efficiency of a number of different investments. To calculate ROI, the benefit (return) of an investment is divided

by the cost of the investment; the result is expressed as a percentage or a ratio. The return on investment formula:

 MADHAVI PINGILI 6

Return on investment is a very popular metric because of its versatility and simplicity. That is, if an investment

does not have a positive ROI, or if there are other opportunities with a higher ROI, then the investment should be

not be undertaken.

Project Sizes:

• Size as team strength could be:

– Trivial (Minor) Size: 1 person

– Small Size: 5 people

– Moderate Size: 25 people

– Large Size: 125 people

– Huge Size: 625 people

• The more the size, the greater are the costs of management overhead, communication, synchronizations among

various projects or modules, etc.

Reduce Software Size:

The less software we write, the better it is for project management and for product quality

- The cost of software is not just in the cost of ‘coding’ alone; it is also in

– Analysis of requirements

– Design

– Review of requirements, design and code

– Test Planning and preparation

– Testing

– Bug fix

– Regression testing

– ‘Coding’ takes around 15% of development cost

Clearly, if we reduce 15 hrs of coding, we can directly reduce 100 hrs of development effort, and also reduce the

project team size appropriately

- Size reduction is defined in terms of human-generated source code. Most often, this might still mean that the

computer-generated executable code is at least the same or even more

- Software Size could be reduced by

– Software Re-use

– Use of COTS (Commercial Off-The Shelf Software)

– Programming Languages

PRAGMATIC SOFTWARE ESTIMATION:

- If there is no proper well-documented case study then it is difficult to estimate the cost of the software. It

is one of the critical problems in software cost estimation.

- But the cost model vendors claim that their tools are well suitable for estimating iterative

Development projects.

In order to estimate the cost of a project the following three topics should be considered,

- Which cost estimation model to use?

- Whether to measure software size in SLOC or function point.

- What constitutes a good estimate?

 There is a lot of software cost estimation models are available such as, COCOMO, CHECKPOINT,

ESTIMACS, Knowledge Plan, Price-S, ProQMS, SEER, SLIM, SOFTCOST, and SPQR/20.

Of which COCOMO is one of the most open and well-documented cost estimation models.

The software size can be measured by using 1) SLOC 2) Function points.

 MADHAVI PINGILI 7

- Most software experts argued that the SLOC is a poor measure of size. But it has some value in the software

Industry.

- SLOC worked well in applications that were custom built why because of easy to automate and

Instrument.

- Now a days there are so many automatic source code generators are available and there are so

Many advanced higher-level languages are available. So SLOC is a uncertain measure.

The main advantage of function points is that this method is independent of the technology and is

Therefore a much better primitive unit for comparisons among projects and organizations.

The main disadvantage of function points is that the primitive definitions are abstract and

measurements are not easily derived directly from the evolving artifacts.

- Function points is more accurate estimator in the early phases of a project life cycle. In later

phases, SLOC becomes a more useful and precise measurement basis of various metrics perspectives.

- The most real-world use of cost models is bottom-up rather than top-down.

- The software project manager defines the target cost of the software, then manipulates the parameters and sizing

until the target cost can be justified.

 MADHAVI PINGILI 8

UNIT-II

 MADHAVI PINGILI 9

Improving Software Economics

- It is not that much easy to improve the software economics but also difficult to measure and

validate.

- There are many aspects are there in order to improve the software economics they are, Size,

Process, Personnel, Environment and quality.

- These parameters (aspects) are not independent they are dependent. For example, tools enable

size reduction and process improvements, size-reduction approaches lead to process changes,

and process improvements drive tool requirements.

- GUI technology is a good example of tools enabling a new and different process. GUI builder

tools permitted engineering teams to construct an executable user interface faster and less cost.

- Two decades ago, teams developing a user interface would spend extensive time analyzing

factors, screen layout, and screen dynamics. All this would done on paper. Where as by using

GUI, the paper descriptions are not necessary.

- Along with these five basic parameters another important factor that has influenced software

technology improvements across the board is the ever-increasing advances in hardware

Performance.

 MADHAVI PINGILI 10

REDUCING SOFTWARE PRODUCT SIZE:

- By choosing the type of the language

- By using Object-Oriented methods and visual modeling

- By reusing the existing components and building reusable components &

- By using commercial components,we can reduce the product size of a software.

 MADHAVI PINGILI 11

Here UPFs (Universal Function Points) are useful estimators for language-independent in the early life cycle

phases. The basic units of function points are:

- External user inputs

- External outputs

- Internal logical data groups

- External data Interfaces

- External inquiries

OBJECT ORIENTED METHODS AND VISUAL MODELING:

- There has been a widespread movements in the 1990s toward Object-Oriented technology.

 MADHAVI PINGILI 12

- Some studies concluded that Object-Oriented programming languages appear to benefit both software

productivity and software quality. One of such Object-Oriented method is UML- Unified Modeling Language.

Booch described the following three reasons for the success of the projects that are using

Object-Oriented concepts:

1) An OO-model of the problem and its solution encourages a common vocabulary between the end user of a

system and its developers, thus creating a shared understanding of the problem being solved.

2) The use of continuous integration creates opportunities to recognize risk early and make incremental

corrections without weaken the entire development effort.

3) An OO-architecture provides a clear separation among different elements of a system, crating firewalls that

prevent a change in one part of the system from the entire architecture.

He also suggested five characteristics of a successful OO-Project,

1) A cruel focus on the development of a system that provides a well understood collection of

essential minimal characteristics.

2) The existence of a culture that is centered on results, encourages communication, and yet is not afraid to

fail.

3) The effective use of OO-modeling.

4) The existence of a strong architectural vision.

5) The application of a well-managed iterative and incremental development life cycle.

REUSE:

Organizations that translates reusable components into commercial products has the following

characteristics:

- They have an economic motivation for continued support.

- They take ownership of improving product quality, adding new features and transitioning to

new technologies.

 MADHAVI PINGILI 13

- They have a sufficiently broad customer base to be profitable.

COMMERCIAL COMPONENTS

 MADHAVI PINGILI 14

IMPROVING SOFTWARE PROCESSES:

 There are three distinct process perspectives:

1) Meta process:

- It is an Organization’s policies, procedures, and practices for pursuing a software- intensive

line of business.

- The focus of this process is of organizational economics, long-term strategies, and a

software ROI.

2) Macro process:

- A project’s policies, and practices for producing a complete software product within

certain cost, schedule, and quality constraints.

- The focus of the macroprocess is on creating an sufficient instance of the

metaprocess for a specific set of constraints.

3) Micro process:

- A projects team’s policies, procedures, and practices for achieving an artifact of a software

process.

- The focus of the microprocess is on achieving an intermediate product baseline with

sufficient functionality as economically and rapidly as practical.

The objective of process improvement is to maximize the allocation of resources to

productive activities and minimize the impact of overhead activities on resources such as personnel,

computers, and schedule.

 MADHAVI PINGILI 15

IMPROVING TEAM EFFECTIVENESS:
- COCOMO model suggests that the combined effects of personnel skill and experience can have an impact

on productivity as much as a factor of four over the unskilled personnel.

- Balance and coverage are two of the most important features of excellent teams. Whenever a team

is in out of balance then it is vulnerable.

- It is the responsibility of the project manager to keep track of his teams. Since teamwork is much more

important than the sum of the individuals.

Boehm – staffing principles:

1) The principle of top talent: Use better and fewer people.

2) The principle of job matching: Fit the tasks to the skills and motivation of the people available.

3) The principle of career progression: An organization does best in the long run by helping its people to

self-actualize.

 MADHAVI PINGILI 16

4) The principle of team balance: Select people who will complement and synchronize with one another.

5) The principle of phase-out: Keeping a misfit on the team doesn’t benefit anyone.

In general, staffing is achieved by these common methods:

– If people are already available with required skill set, just take them

– If people are already available but do not have the required skills, re-train them

– If people are not available, recruit trained people

– If you are not able to recruit skilled people, recruit and train people

Staffing of key personnel is very important:

- Project Manager

- Software Architect

Important Project Manager Skills:

 Hiring skills. Few decisions are as important as hiring decisions. Placing the right person in the right job

seems obvious but is surprisingly hard to achieve.

 Customer-interface skill. Avoiding adversarial relationships among stake-holders is a prerequisite for

success.

 Decision-making skill. The jillion books written about management have failed to provide a clear

definition of this attribute. We all know a good leader when we run into one, and decision-making skill seems

obvious despite its intangible definition.

 Team-building skill. Teamwork requires that a manager establish trust, motivate progress, exploit

eccentric prima donnas, transition average people into top performers, eliminate misfits, and consolidate

diverse opinions into a team direction.

 Selling skill. Successful project managers must sell all stakeholders (including themselves) on decisions

and priorities, sell candidates on job positions, sell changes to the status quo in the face of resistance, and

sell achievements against objectives. In practice, selling requires continuous negotiation, compromise, and

empathy.

 MADHAVI PINGILI 17

Important Software Architect Skills:

• Technical Skills: the most important skills for an architect. These must include skills in

both, the problem domain and the solution domain

• People Management Skills: must ensure that all people understand and implement the

architecture in exactly the way he has conceptualized it. This calls for a lot of people

management skills and patience.

• Role Model: must be a role model for the software engineers – they would emulate all

good (and also all bad !) things that the architect does

IMPROVING AUTOMATION THROUGH SOFTWARE ENVIRONMENTS:

The following are the some of the configuration management environments which provide the

foundation for executing and implementing the process:

Planning tools, Quality assurance and analysis tools, Test tools, and User interfaces provide

crucial automation support for evolving the software engineering artifacts.

Round-trip engineering: is a term used to describe the key capability of environments that

support iterative development.

Forward engineering: is the automation of one engineering artifact from another, more abstract

representation. Ex: compilers and linkers

Reverse engineering: is the generation of modification of more abstract representation from an

existing artifact. Ex: creating visual design model from a source code.

 MADHAVI PINGILI 18

ACHIEVING REQUIRED QUALITY:

cycle

Key elements that improve overall software quality include the following:

- Focusing on powerful requirements and critical use case early in the life

- Focusing on requirements completeness and traceability late in the life cycle

- Focusing throughout the life cycle on a balance between requirements evolution, design

evolution, and plan evolution

- Using metrics and indicators to measure the progress and quality of an architecture as it

evolves from high-level prototype into a fully biddable product

- Providing integrated life-cycle environments that support early and continuous

configuration control, change management, rigorous design methods, document automation, and

regression test automation

- Using visual modeling and higher level languages that support architectural control,

abstraction, reliable programming, reuse, and self-documentation

- Early and continuous close look into performance issues through demonstration-based

evaluations

In order to evaluate the performance the following sequence of events are necessary,

1) Project inception 2) Initial design review

2) Mid-life-cycle design review 4) Integration and test

 MADHAVI PINGILI 19

 MADHAVI PINGILI 20

 MADHAVI PINGILI 21

PEER INSPECTIONS: A PRAGMATIC VIEW:

 MADHAVI PINGILI 22

THE OLD WAY AND THE NEW

- Over the past two decades software development is a re-engineering process.

Now it is replaced by advanced software engineering technologies.

- This transition is was motivated by the unsatisfactory demand for the software

and reduced cost.

THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

Based on many years of software development experience, the software industry

proposed so many principles (nearly 201 by – Davis’s). Of which Davis’s top

30 principles are:

 MADHAVI PINGILI 23

1) Make quality #1: Quality must be quantified and mechanisms put into place

to motivate its achievement.

2) High-quality software is possible: In order to improve the quality of the product

we need to involving the customer, select the prototyping, simplifying design,

conducting inspections, and hiring the best people.

3) Give products to customers early: No matter how hard you try to learn user’s

needs during the requirements phase, the most effective way to determine real needs

is to give users a product and let them play with it.

4) Determine the problem before writing the requirements: Whenever a problem

is raised most engineers provide a solution. Before we try to solve a problem, be

sure to explore all the alternatives and don’t be blinded by the understandable

solution.

5) Evaluate design alternatives: After the requirements are greed upon, we must

examine a variety of architectures and algorithms and choose the one which is not

used earlier.

6) Use an appropriate process model: For every project, there are so many

prototypes (process models). So select the best one that is exactly suitable to our

project.

7) Use different languages for different phases: Our industry’s main aim is to

provide simple solutions to complex problems. In order to accomplish this goal

choose different languages for different modules/phases if required.

8) Minimize intellectual distance: We have to design the structure of a software is

as close as possible to the real-world structure.

9) Put techniques before tools: An un disciplined software engineer with a tool

becomes a dangerous, undisciplined software engineer.

 MADHAVI PINGILI 24

10) Get it right before you make it faster: It is very easy to make a working

program run faster than it is to make a fast program work. Don’t worry about

optimization during initial coding.

11) Inspect the code: Examine the detailed design and code is a much better way to

find the errors than testing.

12) Good management is more important than good technology

13) People are the key to success: Highly skilled people with appropriate

experience, talent, and training are key. The right people with insufficient tools,

languages, and process will succeed.

14) Follow with care: Everybody is doing something but does not make it right for

you. It may be right, but you must carefully assess its applicability to your

environment.

15) Take responsibility: When a bridge collapses we ask “what did the engineer do

wrong?”. Similarly if the software fails, we ask the same. So the fact is in every

engineering discipline, the best methods can be used to produce poor results and the

most out of date methods to produce stylish design.

16) Understand the customer’s priorities. It is possible the customer would

tolerate 90% of the functionality delivered late if they could have 10% of it on time.

17) The more they see, the more they need. The more functionality (or

performance) you provide a user, the more functionality (or performance) the user

wants.

 MADHAVI PINGILI 25

18) Plan to throw one away .One of the most important critical success factors is

whether or not a product is entirely new. Such brand-new applications, architectures,

interfaces, or algorithms rarely work the first time.

19) Design for change. The architectures, components, and specification

techniques you use must accommodate change.

20) Design without documentation is not design. I have often heard software

engineers say, “I have finished the design. All that is left is the documentation.”

21. Use tools, but be realistic. Software tools make their users more efficient.

22. Avoid tricks. Many programmers love to create programs with tricks-

constructs that perform a function correctly, but in an obscure way. Show the world

how smart you are by avoiding tricky code.

23. Encapsulate. Information-hiding is a simple, proven concept that results in

software that is easier to test and much easier to maintain.

24. Use coupling and cohesion. Coupling and cohesion are the best ways to

measure software’s inherent maintainability and adaptability.

25. Use the McCabe complexity measure. Although there are many metrics

available to report the inherent complexity of software, none is as intuitive and easy

to use as Tom McCabe’s.

26. Don’t test your own software. Software developers should never be the

primary testers of their own software.

27. Analyze causes for errors. It is far more cost-effective to reduce the effect of an

error by preventing it than it is to find and fix it. One way to do this is to analyze the

causes of errors as they are detected.

28. Realize that software’s entropy increases. Any software system that

undergoes continuous change will grow in complexity and become more and more

disorganized.

 MADHAVI PINGILI 26

29. People and time are not interchangeable. Measuring a project solely by

person-months makes little sense.

30) Expert excellence. Your employees will do much better if you have high

expectations for them.

THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT

1) Base the process on an architecture-first approach: (Central design element)

- Design and integration first, then production and test

2) Establish an iterative life-cycle process: (The risk management element)

- Risk control through ever-increasing function, performance, quality.

With today’s sophisticated systems, it is not possible to define the entire problem, design the

entire solution, build the software, then test the end product in sequence. Instead, and iterative

process that refines the problem understanding, an effective solution, and an effective plan

over several iterations encourages balanced treatment of all stakeholder objectives.

Major risks must be addressed early to increase predictability and avoid expensive downstream

scrap and rework.

3) Transition design methods to emphasize component-based development: (The

technology element)

Moving from LOC mentally to component-based mentally is necessary to reduce the amount

of human-generated source code and custom development.A component is a cohesive set of

preexisting lines of code, either in source or executable format, with a defined interface and

behavior.

4) Establish a change management environment: (The control element)

- Metrics, trends, process instrumentation

The dynamics of iterative development, include concurrent workflows by different teams

working on shared artifacts, necessitates objectively controlled baseline.

 MADHAVI PINGILI 27

5) Enhance change freedom through tools that support round-trip engineering: (The automation

element)

- Complementary tools, integrated environment

Round-trip engineering is the environment support necessary to automate and synchronize

engineering information in different formats. Change freedom is necessary in an iterative

process.

6) Capture design artifacts in rigorous, model-based notation:

- A model-based approach supports the evolution of semantically rich graphical and textual

design notations.

- Visual modeling with rigorous notations and formal machine- process able language provides

more objective measures than the traditional approach of human review and inspection of ad hoc

design representations in paper doc.

7) Instrument the process for objective quality control and progress assessment:

- Life-cycle assessment of the progress and quality of all intermediate product must be integrated

into the process.

- The best assessment mechanisms are well-defined measures derived directly from the evolving

engineering artifacts and integrated into all activities and teams.

8) Use a demonstration-based approach to assess intermediate artifacts:

Transitioning from whether the artifact is an early prototype, a baseline architecture, or a beta

capability into an executable demonstration of relevant provides more tangible understanding of

the design tradeoffs, early integration and earlier elimination of architectural defects.

9) Plan intermediate releases in groups of usage scenarios with evolving levels of

detail.

10) Establish a configurable process that economically scalable:

No single process is suitable for all software developments. The process must ensure that

there is economy of scale and ROI.

MADHAVI PINGILI 1

MADHAVI PINGILI 2

MADHAVI PINGILI 3

UNIT-III

MADHAVI PINGILI 4

- If there is a well defined separation between “research and development” activities and

“production” activities then the software is said to be in successful development process.

- Most of the software’s fail due to the following characteristics ,

1) An overemphasis on research and development.

2) An overemphasis on production.

ENGINEERING AND PRODUCTION STAGES :

To achieve economics of scale and higher return on investment, we must move toward a software

manufacturing process which is determined by technological improvements in process

automation and component based development.

There are two stages in the software development process

1) The engineering stage: Less predictable but smaller teams doing design and production

activities. This stage is decomposed into two distinct phases inception and elaboration.

2) The production stage: More predictable but larger teams doing construction, test, and

deployment activities. This stage is also decomposed into two distinct phases construction and

transition.

MADHAVI PINGILI 5

MADHAVI PINGILI 6

These four phases of lifecycle process are loosely mapped to the conceptual framework of the spiral model is as

shown in the following figure.

- In the above figure the size of the spiral corresponds to the inactivity of the project with respect to the breadth

and depth of the artifacts that have been developed.

- This inertia manifests itself in maintaining artifact consistency, regression testing, documentation, quality

analyses, and configuration control.

- Increased inertia may have little, or at least very straightforward, impact on changing any given discrete

component or activity.

- However, the reaction time for accommodating major architectural changes, major requirements changes, major

planning shifts, or major organizational perturbations clearly increases in subsequent phases.

INCEPTION PAHSE:

The main goal of this phase is to achieve agreement among stakeholders on the life-cycle objectives for the

project.

PRIMARY OBJECTIVES

1) Establishing the project’s scope and boundary conditions

2) Distinguishing the critical use cases of the system and the primary scenarios of operation

3) Demonstrating at least one candidate architecture against some of the primary scenarios

4) Estimating cost and schedule for the entire project

5) Estimating potential risks

MADHAVI PINGILI 7

ESSENTIAL ACTIVITIES:

1) Formulating the scope of the project

2) Synthesizing the architecture

3) Planning and preparing a business case

ELABORATION PHASE

- It is the most critical phase among the four phases.

- Depending upon the scope, size, risk, and freshness of the project, an executable architecture prototype is

built in one or more iterations.

- At most of the time the process may accommodate changes, the elaboration phase activities must ensure

that the architecture, requirements, and plans are stable. And also the cost and schedule for the completion of the

development can be predicted within an acceptable range.

PRIMARY OBJECTIVES

1) Base lining the architecture as rapidly as practical

2) Base lining the vision

3) Base lining a high-reliability plan for the construction phase

4) Demonstrating that the baseline architecture will support the vision at a reasonable cost in a reasonable time.

ESSENTIAL ACTIVITIES

1) Elaborating the vision

2) Elaborating the process and infrastructure

3) Elaborating the architecture and selecting components

CONSTRUCTION PHASE

During this phase all the remaining components and application features are integrated into the application, and

all features are thoroughly tested. Newly developed software is integrated where ever required.

- If it is a big project then parallel construction increments are generated.

PRIMARY OBJECTIVES

1) Minimizing development costs

2) Achieving adequate quality as rapidly as practical

3) Achieving useful version (alpha, beta, and other releases) as rapidly as practical

ESSENTIAL ACTIVITIES

1) Resource management, control, and process optimization

2) Complete component development and testing evaluation criteria

MADHAVI PINGILI 8

3) Assessment of product release criteria of the vision

TRANSITION PHASE

Whenever a project is grown-up completely and to be deployed in the end-user domain this phase is called

transition phase. It includes the following activities:

1) Beta testing to validate the new system against user expectations

2) Beta testing and parallel operation relative to a legacy system it is replacing

3) Conversion of operational databases

4) Training of users and maintainers

PRIMARY OBJECTIVES

1) Achieving user self-supportability

2) Achieving stakeholder concurrence

3) Achieving final product baseline as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES

1) Synchronization and integration of concurrent construction increments into consistent deployment baselines

2) Deployment-specific engineering

3) Assessment of deployment baselines against the complete vision and acceptance criteria in the requirement

set.

Artifacts of the Process

- Conventional s/w projects focused on the sequential development of s/w artifacts:

- Build the requirements

- Construct a design model traceable to the requirements &

- Compile and test the implementation for deployment.

-This process can work for small-scale, purely custom developments in which the design representation,

implementation representation and deployment representation are closely aligned.

- This approach is doesn't work for most of today’s s/w systems why because of having complexity and

are composed of numerous components some are custom, some reused, some commercial products.

THE ARTIFACT SETS

In order to manage the development of a complete software system, we need to gather distinct collections of

information and is organized into artifact sets.

MADHAVI PINGILI 9

- Set represents a complete aspect of the system where as artifact represents interrelated information

that is developed and reviewed as a single entity.

- The artifacts of the process are organized into five sets:

1) Management 2) Requirements 3) Design

4) Implementation 5) Deployment

here the management artifacts capture the information that is necessary to synchronize stakeholder

expectations. Where as the remaining four artifacts are captured rigorous notations that support automated

analysis and browsing.

THE MANAGEMENT SET

It captures the artifacts associated with process planning and execution. These artifacts use ad hoc notation

including text, graphics, or whatever representation is required to capture the “contracts” among,

- project personnel:

project manager, architects, developers, testers, marketers, administrators

- stakeholders:

funding authority, user, s/w project manager, organization manager, regulatory agency &

between project personnel and stakeholders

MADHAVI PINGILI 10

Management artifacts are evaluated, assessed, and measured through a combination of

1) Relevant stakeholder review.

2) Analysis of changes between the current version of the artifact and previous versions.

3) Major milestone demonstrations of the balance among all artifacts.

THE ENGINEERING SETS:

1) REQUIREMENT SET:

- The requirements set is the primary engineering context for evaluating the other three engineering

artifact sets and is the basis for test cases.

- Requirement artifacts are evaluated, assessed, and measured through a combination of

1) Analysis of consistency with the release specifications of the mgmt set.

2) Analysis of consistency between the vision and the requirement models.

3) Mapping against the design, implementation, and deployment sets to

evaluate the consistency and completeness and the semantic balance between information in the

different sets.

4) Analysis of changes between the current version of the artifacts and previous versions.

5) Subjective review of other dimensions of quality.

2) DESIGN SET:

- UML notations are used to engineer the design models for the solution.

- It contains various levels of abstraction and enough structural and behavioral information to determine a bill

of materials.

- Design model information can be clearly and, in many cases, automatically translated into a subset of the

implementation and deployment set artifacts.

The design set is evaluated, assessed, and measured through a combination of

1) Analysis of the internal consistency and quality of the design model.

2) Analysis of consistency with the requirements models.

3) Translation into implementation and deployment sets and notations to evaluate the consistency and

completeness and semantic balance between information in the sets.

4) Analysis of changes between the current version of the design model and previous versions.

5) Subjective review of other dimensions of quality.

3) IMPLEMENTATION SET:

MADHAVI PINGILI 11

- The implementation set include source code that represents the tangible implementations of components and

any executables necessary for stand-alone testing of components.

- Executables are the primitive parts that are needed to construct the end product, including custom

components, APIs of commercial components.

- Implementation set artifacts can also be translated into a subset of the deployment set. Implementation sets are

human-readable formats that are evaluated, assessed, and measured through a combination of

1) Analysis of consistency with design models

2) Translation into deployment set notations to evaluate consistency and completeness among artifact sets.

3) Execution of stand-alone component test cases that automatically compare expected results with actual

results.

4) Analysis of changes b/w the current version of the implementation set and previous versions.

5) Subjective review of other dimensions of quality.

4) DEPLOYMENT SET:

- It includes user deliverables and machine language notations, executable software, and the build scripts,

installation scripts, and executable target-specific data necessary to use the product in its target environment.

Deployment sets are evaluated, assessed, and measured through a combination of

1) Testing against the usage scenarios and quality attributes defined in the requirements set to evaluate the

consistency and completeness and the semantic balance between information in the two sets.

2) Testing the partitioning, replication, and allocation strategies in mapping components of the implementation

set to physical resources of the deployment system.

3) Testing against the defined usage scenarios in the user manual such as installation, user-oriented dynamic

reconfiguration, mainstream usage, and anomaly management.

4) Analysis of changes b/w the current version of the deployment set and previous versions.

5) Subjective review of other dimensions of quality.

Each artifact set uses different notations to capture the relevant artifact.

1) Management set notations (ad hoc text, graphics, use case notation) capture the plans, process,

objectives, and acceptance criteria.

MADHAVI PINGILI 12

2) Requirement notation (structured text and UML models) capture the engineering context and the

operational concept.

3) Implementation notations (software languages) capture the building blocks of the solution in human-

readable formats.

4) Deployment notations (executables and data files) capture the solution in machine-readable formats.

IMPLEMENTATION SET VERSUS DEPLOYMENT SET

- The structure of the information delivered to the user (testing people) is very different from the structure of

the source code implementation.

- Engineering decisions that have impact on the quality of the deployment set but are relatively incomprehensible

in the design and implementation sets include:

1) Dynamically reconfigurable parameters such as buffer sizes, color palettes, number of servers, number of

simultaneous clients, data files, run-time parameters.

2) Effects of compiler/link optimizations such as space optimization versus speed optimization.

3) Performance under certain allocation strategies such as centralized versus distributed, primary and shadow

threads, dynamic load balancing.

4) Virtual machine constraints such as file descriptors, garbage collection, heap size, maximum record

size, disk file rotations.

5) Process-level concurrency issues such as deadlock and race condition.

MADHAVI PINGILI 13

6) Platform-specific differences in performance or behavior.

ARTIFACTS EVOLUTION OVER THE LIFE CYCLE

- Each state of development represents a certain amount of precision in the final system description.

- Early in the lifecycle, precision is low and the representation is generally high. Eventually, the precision of

representation is high and everything is specified in full detail.

- At any point in the lifecycle, the five sets will be in different states of completeness. However, they

should be at compatible levels of detail and reasonably traceable to one another.

- Performing detailed traceability and consistency analyses early in the life cycle i.e. when precision is low and

changes are frequent usually has a low ROI.

Inception phase: It mainly focuses on critical requirements, usually with a secondary focus on an initial

deployment view, little implementation and high-level focus on the design architecture but not on design

detail.

Elaboration phase: It include generation of an executable prototype, involves subsets of development in all four

sets. A portion of all four sets must be evolved to some level of completion before an architecture baseline can be

established.

Fig: Life-Cycle evolution of the artifact sets

Construction: Its main focus on design and implementation. In the early stages the main focus is on the depth of

the design artifacts. Later, in construction, realizing the design in source code and individually tested components.

This stage should drive the requirements, design, and implementation sets almost to completion. Substantial

work is also done on the deployment

MADHAVI PINGILI 14

set, at least to test one or a few instances of the programmed system through alpha or beta releases.

Transition: The main focus is on achieving consistency and completeness of the deployment set in the context

of another set. Residual defects are resolved, and feedback from alpha, beta, and system testing is incorporated.

TEST ARTIFACTS:

Testing refers to the explicit evaluation through execution of deployment set components under a

controlled scenario with an expected and objective outcome.

- What ever the document-driven approach that was applied to software development is also followed by the

software testing people.

- Development teams built requirements documents, top-level design documents, and detailed design documents

before constructing any source files or executable files.

- In the same way test teams built system test plan documents, unit test plan documents, and unit test procedure

documents before building any test drivers, stubs, or instrumentation.

- This document-driven approach caused the same problems for the test activities that it did for the development

activities.

- One of the truly tasteful belief of a modern process is to use exactly the same sets, notations, and artifacts for

the products of test activities as are used for product development.

- The test artifacts must be developed concurrently with the product from inception through deployment.

i.e. Testing a full-life-cycle activity, not a late life-cycle activity.

- The test artifacts are communicated, engineered, and developed within the same artifact sets as the developed

product.

- The test artifacts are implemented in programmable and repeatable formats as software programs.

- The test artifacts are documented in the same way that the product is documented.

- Developers of the test artifacts use the same tools, techniques, and training as the software engineers developing

the product.

- Testing is only one aspect of the evaluation workflow. Other aspects include inspection, analysis, and

demonstration.

- The success of test can be determined by comparing the expected outcome to the actual outcome with well-

defined mathematical precision.

MANAGEMENT ARTIFACTS:

 Development of WBS is dependent on product management style , organizational culture, custom

performance, financial constraints and several project specific parameters.

MADHAVI PINGILI 15

• The WBS is the architecture of project plan. It encapsulate change and evolve with appropriate level

of details.

• A WBS is simply a hierarchy of elements that decomposes the project plan into discrete work task.

• A WBS provides the following information structure

• - A delineation of all significant tasks.

• - A clear task decomposition for assignment of responsibilities.

• - A framework for scheduling ,debugging and expenditure tracking.

• -Most systems have first level decomposition subsystem. subsystems are then decomposed

into their components

• Therefore WBS is a driving vehicle for budgeting and collecting cost.

• The structure of cost accountability is a serious project planning constraints.

Business case:

MADHAVI PINGILI 16

MADHAVI PINGILI 17

MADHAVI PINGILI 18

MADHAVI PINGILI 19

MADHAVI PINGILI 20

:

• Managing change is one of the fundamental primitives of an iterative development process.

• This flexibility increases the content, quality, and number of iterations that a project can

achieve within a given schedule.

• Once software is placed in a controlled baseline, all changes must be formally tracked and

managed.

• Most of the change management activities can be automated by automating data entry and

maintaining change records online.

MADHAVI PINGILI 21

MADHAVI PINGILI 22

MADHAVI PINGILI 23

MADHAVI PINGILI 24

MADHAVI PINGILI 25

Model-Based Software Architectures

INTRODUCTION:

Software architecture is the central design problem of a complex software system in the same way

an

architecture is the software system design.

The ultimate goal of the engineering stage is to converge on a stable architecture baseline.

Architecture is not a paper document. It is a collection of information across all the engineering

sets.

Architectures are described by extracting the essential information from the design models.

A model is a relatively independent abstraction of a system.

A view is a subset of a model that abstracts a specific, relevant perspective.

ARCHITECTURE : A MANAGEMENT PERSPECTIVE

The most critical and technical product of a software project is its architecture

If a software development team is to be successful, the interproject communications, as captured

in software architecture, must be accurate and precise.

From the management point of view, three different aspects of architecture

1. An architecture (the intangible design concept) is the design of software system it includes all

engineering necessary to specify a complete bill of materials. Significant make or buy decisions

are resolved, and all custom components are elaborated so that individual component costs and

construction/assembly costs can be determined with confidence.

2. An architecture baseline (the tangible artifacts) is a slice of information across the engineering

artifact sets sufficient to satisfy all stakeholders that the vision (function and quality) can be

achieved within the parameters of the business case (cost, profit, time, technology, people).

3. An architectural description is an organized subset of information extracted from the design set

model's. It explains how the intangible concept is realized in the tangible artifacts.

The number of views and level of detail in each view can vary widely. For example the architecture

of the software architecture of a small development tool.

MADHAVI PINGILI 26

There is a close relationship between software architecture and the modern software

development process because of the following reasons:

1. A stable software architecture is nothing but a project milestone where critical make/buy

decisions should have been resolved. The life-cycle represents a transition from the engineering

stage of a project to the production stage.

2. Architecture representation provide a basis for balancing the trade-offs between the problem

space (requirements and constraints) and the solution space (the operational product).

3. The architecture and process encapsulate many of the important communications among

individuals, teams, organizations, and stakeholders.

4. Poor architecture and immature process are often given as reasons for project failure.

5. In order to proper planning, a mature process, understanding the primary requirements and

demonstrable architecture are important fundamentals.

6. Architecture development and process definition are the intellectual steps that map the problem

to a solution without violating the constraints; they require human innovation and cannot be

automated.

ARCHITECTURE: A TECHNICAL PERSPECTIVE

Software architecture include the structure of software systems, their behavior, and the patterns

that guide these elements, their collaborations, and their composition.

An architecture framework is defined in terms of views is the abstraction of the UML models in

the design set. Where as architecture view is an abstraction of the design model, include full

breadth and depth of information.

Most real-world systems require four types of views:

1) Design: describes architecturally significant structures and functions of the design model.

2) Process: describes concurrency and control thread relationships among the design, component,

and deployment views.

3) Component: describes the structure of the implementation set.

4) Deployment: describes the structure of the deployment set.

The design set include all UML design models describing the solution space.

The design, process, and use case models provide for visualization of the logical and behavioral

aspect of the design.

The component model provides for visualization of the implementation set.

__ The deployment model provides for visualization of the deployment set.

MADHAVI PINGILI 27

1. The use case view describes how the system’s critical use cases are realized by elements of the

design model. It is modeled statistically by using use case diagrams, and dynamically by using any

of the UML behavioral diagrams.

2. The design view describes the architecturally significant elements of the design model. It is

modeled statistically by using class and object diagrams, and dynamically using any of the UML

behavioral diagrams.

3. The process view addresses the run-time collaboration issues involved in executing the

architecture on a distributed deployment model, including logical software topology, inter process

communication, and state mgmt. it is modeled statistically using deployment diagrams, and

dynamically using any of the UML behavioral diagrams.

4. The component view describes the architecturally significant elements of the implementation

set. It is modeled statistically using component diagrams, and dynamically using any of the UML

behavioral diagrams.

The deployment view addresses the executable realization of the system, including the allocation

of logical processes in the distributed view to physical resources of the deployment network. It is

modeled statistically using deployment diagrams, and dynamically using any of UML behavioral

diagrams.

Architecture descriptions take on different forms and styles in different organizations and domains.

At any given time, an architecture requires a subset of artifacts in engineering set.

- An architecture baseline is defined as a balanced subset of information across all sets, whereas

an architecture description is completely encapsulated within the design set.

Generally architecture base line include:

1) Requirements 2) Design

3) Implementation 4) Deployment

MADHAVI PINGILI 28

UNIT-IV

MADHAVI PINGILI 29

Workflows of the Process:

In most of the cases a process is a sequence of activities why because of easy to

understand, represent, plans and conduct.

But the simplistic activity sequences are not realistic why because it includes

many teams, making progress on many artifacts that must be synchronized, cross-

checked, homogenized, merged and integrated.

In order to manage complex software’s the workflow of the software process is

to be changed that is distributed.

Modern software process avoids the life-cycle phases like inception, elaboration,

construction and transition. It tells only the state of the project rather than a sequence

of activities in each phase.

The activities of the process are organized in to seven major workflows:

1) Management 2) Environment 3) Requirements

4) Design 5) Implementation 6) Assessment

7) Deployment

These activities are performed concurrently, with varying levels of effort and

emphasis as a project progresses through the life cycle.

The management workflow is concerned with three disciplines:

1) Planning 2) Project control 3) Organization

The term workflow means a thread of cohesive and mostly sequential activities.

MADHAVI PINGILI 30

Management workflow: controlling the process and ensuring win conditions for all

stakeholders.

Environment workflow: automating the process and evolving the maintenance

environment.

Requirements workflow: analyzing the problem space and evolving the requirements

artifacts.

Design workflow: modeling the solution and evolving the architecture and design

artifacts.

Implementation workflow: programming the components and evolving the

implementation and

deployment artifacts.

Assessment workflow: assessing the trends in process and product quality.

Deployment workflow: transitioning the end products to the user.

Key Principles Of Modern Software Engineering:

1. Architecture-first approach: It focuses on implementing and testing the

architecture must

precede full- scale development and testing of all the components and must

precede the downstream focus on completeness and quality of the entire

breadth of the product features. Extensive requirements analysis, design,

implementation, and assessment activities are performed before the

construction phase if we focus on full scale implementation.

2. Iterative life-cycle process: From the above figure each phase describes

at least two iterations

of each workflow. This default is intended to be descriptive, not prescriptive.

Some projects may

require only one iteration in a phase; other may require several iterations. The

point here is that

the activities and artifacts of any given workflow may require more than one

pass to achieve

adequate results.

MADHAVI PINGILI 31

3. Round-trip engineering: Raising the environment activities to a first-class workflow

is critical. The environment is the tangible picture of the project’s process, methods, and

notations for producing the artifacts.

4. Demonstration-based approach: Implementation and assessment activities are

initiated early

in the life cycle, reflecting the emphasis on constructing executable subsets of the

evolving

architecture.
-

MADHAVI PINGILI 32

Management: Planning to determine the content of the release and develop the detailed plan for the

iteration and assigning the tasks, related work to the development team.

MADHAVI PINGILI 33

Environment: Evolving the software change order database to reflect all new baselines and changes

to existing baseline for all product, test, and environment components.

Requirements: Analyzing the baseline plan, the baseline architecture, and the baseline requirements

set artifacts to fully elaborate the use cases to be to be demonstrated at the end of this iteration and

their evolution criteria. Updating any requirements set artifacts to reflect changes needed by results

of this iteration’s engine activities.

Design: Evolving the baseline architecture and the baseline design set artifacts to elaborate fully the

design model and test model components necessary to demonstrate at the end of this iteration.

Updating design set artifacts to reflect changes needed by the results of this iteration’s

engine activities.

Implementation: Developing or acquiring any new components, and enhancing or modifying any

existing components, to demonstrate the evolution criteria allocated to this iteration. Integrating and

testing all new and modified components with existing baseline (previous versions).

Assessment: Evaluating the results of the iteration; identifying any rework required and determining

whether it should be performed before development of this release or allocated to the next release and

assessing results to improve the basis of the subsequent iteration’s plan.

Deployment: Transitioning the release either to an external organization to internal closure by

conducting a post-mortem so that lessons learned can be captured and reflected in the next iteration.

- Iterations in the inception and elaboration phases focus on management, requirement and design

activities.

- Iterations in the construction phase focus on design, implementation and assessment activities.

- Iterations in the transition phase focus on assessment and deployment.

Project Organizations and Responsibilities:

MADHAVI PINGILI 34

 Organizations engaged in software Line-of-Business need to support projects with the
infrastructure necessary to use a common process.
 Project organizations need to allocate artifacts & responsibilities across project team to
ensure a balance of global (architecture) & local (component) concerns.
 The organization must evolve with the WBS & Life cycle concerns.
 Software lines of business & product teams have different motivation.
 Software lines of business are motivated by return of investment (ROI), new business
discriminators, market diversification&profitability.
 Project teams are motivated by the cost, Schedule&quality of specific deliverables

1) Line-Of-Business Organizations:
 The main features of default organization are as follows:
• Responsibility for process definition & maintenance is specific to a cohesive line of
business.
• Responsibility for process automation is an organizational role & isequal in
importance to the process definition role.
• Organizational role may be fulfilled by a single individual or several different teams.

Fig: Default roles in a software Line-of-Business Organization.

Software Engineering Process Authority (SEPA)

 The SEPA facilities the exchange of information & process guidance both to & from

MADHAVI PINGILI 35

project practitioners

This role is accountable to General Manager for maintaining a current assessment of the
organization’s process maturity & its plan for future improvement
 Project Review Authority (PRA)
 The PRA is the single individual responsible for ensuring that a software project
complies with all organizational & business unit software policies, practices & standards

A software Project Manager is responsible for meeting the requirements of a contract or some
other project compliance standard

Software Engineering Environment Authority(SEEA)
 The SEEA is responsible for automating the organization’s process,
 maintainingthe organization’s standard environment, Training projects touse the
environment&maintaining organization-wide reusable assets
 The SEEA role is necessary to achieve a significant ROI for common process.
 Infrastructure
 An organization’s infrastructure provides human resources support, project-
independent research & development, &other capital software engineering assets.

2) Project organizations:

• The above figure shows a default project organization and maps project-level roles

Artifacts Activities

 Business case Customer interface, PRA interface

 Software development plan Planning, monitoring

 Status assessments Risk management
 Software process definition

 Process improvement

Figure 11-2. Default project organization and responsibilities

Software Management

Software Development Software Assessment Software Architecture

Administration System engineering

MADHAVI PINGILI 36

and responsibilities.
• The main features of the default organization are as follows:
• The project management team is an active participant, responsible for producing
as well as managing.
• The architecture team is responsible for real artifacts and for the integration of
components, not just for staff functions.
• The development team owns the component construction and maintenance
activities.
• The assessment team is separate from development.
• Quality is everyone’s into all activities and checkpoints.
• Each team takes responsibility for a different quality perspective.

3) EVOLUTION OF ORGANIZATIONS:

Inception

Elaboration

Software

Management

10%

Software

Management

50%

Software

Assessment

10%

Software

Development

20%

Software

Architecture

20%

Software

Management

10%

Software

Assessment

20%

Software

Development

20%

Software

Architecture

50%

Software

Management

10%

MADHAVI PINGILI 37

Transition

Construction

Inception:
Software management: 50%
Software Architecture: 20%
Software development: 20%
Software Assessment
(measurement/evaluation):10%

Elaboration:
Software management: 10%
Software Architecture: 50%
Software development: 20%
Software Assessment
(measurement/evaluation):20%

Construction:
Software management: 10%
Software Architecture: 10%
Software development: 50%
Software Assessment
(measurement/evaluation):30%

Transition:
Software management: 10%
Software Architecture: 5%
Software development: 35%
Software Assessment
(measurement/evaluation):50%

The Process Automation:

Introductory Remarks:

The environment must be the first-class artifact of the process.

Software

Assessment

50%

Software

Development

35%

Software

Architecture

5%

Software

Assessment

30%

Software

Development

50%

Software

Architecture

10%

MADHAVI PINGILI 38

Process automation& change management is critical to an iterative process. If the change is expensive then the

development organization will resist it.

Round-trip engineering& integrated environments promote change freedom & effective evolution of technical

artifacts.

Metric automation is crucial to effective project control.

External stakeholders need access to environment resources to improve interaction with the development team

& add value to the process.

The three levels of process which requires a certain degree of process automation for the corresponding process

to be carried out efficiently.

Metaprocess (Line of business): The automation support for this level is called an infrastructure.

Macroproces (project):The automation support for a project’s process is called an environment.

Microprocess (iteration):The automation support for generating artifacts is generally called a tool.

Tools: Automation Building blocks:

Many tools are available to automate the software development process. Most of the core software

development tools map closely to one of the process workflows

Workflows Environment Tools & process Automation

Management Workflow automation, Metrics automation

Environment Change Management, Document Automation

Requirements Requirement Management

Design Visual Modeling

Implementation -Editors, Compilers, Debugger, Linker, Runtime

Assessment -Test automation, defect Tracking

Deployment defect Tracking

MADHAVI PINGILI 39

The Project Environment:

The project environment artifacts evolve through three discrete states.

(1)Prototyping Environment.(2)Development Environment.(3)Maintenance Environment.

The Prototype Environment includes an architecture test bed for prototyping project architecture to

evaluate trade-offs during inception & elaboration phase of the life cycle.

The Development environment should include a full suite of development tools needed to support

various

Process workflows & round-trip engineering to the maximum extent possible.

The Maintenance Environment should typically coincide with the mature version of the development.

There are four important environment disciplines that are critical to management context & the success

of a modern iterative development process.

Round-Trip engineering

Change Management

MADHAVI PINGILI 40

Software Change Orders (SCO)

Configuration baseline Configuration Control Board

 Infrastructure

Organization Policy

Organization Environment

Stakeholder Environment.

Round Trip Environment

Tools must be integrated to maintain consistency & traceability.

Round-Trip engineering is the term used to describe this key requirement for environment that support

iterative development.

As the software industry moves into maintaining different information sets for the engineering artifacts,

more automation support is needed to ensure efficient & error free transition of data from one artifacts

to another.

Round-trip engineering is the environment support necessary to maintainConsistency among the

engineering artifacts.

MADHAVI PINGILI 41

Change Management

Change management must be automated & enforced to manage multiple iterations & to enable change

freedom.

Change is the fundamental primitive of iterative Development.

I. Software Change Orders

The atomic unit of software work that is authorized to create,modify or obsolesce components within a

configuration baseline is called a software change orders (SCO)

The basic fields of the SCO are Title, description, metrics, resolution, assessment & disposition

MADHAVI PINGILI 42

Change management

II.Configuration Baseline

A configuration baseline is a named collection of software components &Supporting

documentation that is subjected to change management & is upgraded, maintained,

tested, statuses & obsolesced a unit

There are generally two classes of baselines

MADHAVI PINGILI 43

External Product Release

Internal testing Release

Three levels of baseline releases are required for most Systems

1. Major release (N)

2. Minor Release (M)

3. Interim (temporary) Release (X)

Major release represents a new generation of the product or project

A minor release represents the same basic product but with enhanced features,

performance or quality.

 Major & Minor releases are intended to be external product releases that are persistent

& supported for a period of time.

An interim release corresponds to a developmental configuration that is intended to be

transient.

Once software is placed in a controlled baseline all changes are tracked such that a

distinction must be made for the cause of the change. Change categories are

Type 0: Critical Failures (must be fixed before release)

Type 1: A bug or defect either does not impair (Harm) the usefulness of the system or

can be worked around

Type 2: A change that is an enhancement rather than a response to a defect

Type 3: A change that is necessitated by the update to the environment

Type 4: Changes that are not accommodated by the othercategories.

Change Management

III Configuration Control Board (CCB)

A CCB is a team of people that functions as the decision

MADHAVI PINGILI 44

 Authority on the content of configuration baselines

A CCB includes:

1. Software managers

2. Software Architecture managers

3. Software Development managers

4. Software Assessment managers

5. Other Stakeholderswho are integral to the maintenance of the controlled software

delivery system?

Infrastructure

The organization infrastructure provides the organization’s capitalassets including two

key artifacts - Policy & Environment

I Organization Policy:

A Policy captures the standards for project software developmentprocesses

The organization policy is usually packaged as a handbook that defines the life cycles &

the process primitives such as

 Major milestones
 Intermediate Artifacts
 Engineering repositories
 Metrics
 Roles & Responsibilities

MADHAVI PINGILI 45

Infrastructure

 II Organization Environment

The Environment that captures an inventory of tools which are building blocks from

which project environments can be configuredefficiently & economically

Stakeholder Environment

Many large scale projects include people in external organizationsthat represent other

stakeholders participating in the development processthey might include

 Procurement agency contract monitors
 End-user engineering support personnel
 Third party maintenance contractors
 Independent verification & validation contractors
 Representatives of regulatory agencies & others.

MADHAVI PINGILI 46

These stakeholder representatives also need to access to development resources so

that they can contribute value to overall effort. These stakeholders will be access

through on-line

An on-line environment accessible by the external stakeholdersallow them to

participate in the process a follows

Accept & use executable increments for the hands-on evaluation.

Use the same on-line tools, data & reports that the development organization uses to

manage & monitor the project

Avoid excessive travel, paper interchange delays, format translations, paper * shipping

costs & other overhead cost

MADHAVI PINGILI 47

Checkpoints of the Process

Introduction:

- It is important to place visible milestones in the life cycle in order to discuss the progress of the

project by the stakeholders and also to achieve,

1) Synchronize stakeholder expectations and achieve agreement among the requirements, the

design, and the plan perspectives.

2) Synchronize related artifacts into a consistent and balanced state.

3) Identify the important risks, issues, and out-of-tolerance conditions.

MADHAVI PINGILI 48

4) Perform a global review for the whole life cycle, not just the current situation of an individual

perspective or intermediate product.

- Three sequence of project checkpoints are used to synchronize stakeholder expectations

throughout the lifecycle:

1) Major milestones 2) Minor milestones 3) Status assessments

- The most important major milestone is usually the event that transitions the project from the

elaboration phase into the construction phase.

- The format and content of minor milestones are highly dependent on the project and the

organizational culture.

- Periodic status assessments are important for focusing continuous attention on the evolving health

of the project and its dynamic priorities.

Three types of joint management reviews are conducted throughout the process:

1) Major milestones: These are the system wide events are held at the end of each development

phase.

They provide visibility to system wide issues.

2) Minor milestones: These are the iteration-focused events are conducted to review the content

of an

iteration in detail and to authorize continued work.

3) Status assessments: These are periodic events provide management with frequent and regular

insight

into the progress being made.

- An iteration represents a cycle of activities. Each of the lifecycle phases undergo one or more

iterations.

Minor milestones capture two artifacts: a release specification and a release description. Major

milestones at the end of each phase use formal, stakeholder-approved evaluation criteria and

release

descriptions; minor milestones use informal, development-team-controlled versions of these

artifacts.

- Most projects should establish all four major milestones. Only in exceptional case you add

other major

milestones or operate with fewer. For simpler projects, very few or no minor milestones may be

necessary to manage intermediate results, and the number of status assessments may be infrequent.
--

MADHAVI PINGILI 49

]

MAJOR MILESTONES:

In an iterative model, the major milestones are used to achieve concurrence among all

stakeholders on the current state of the project. Different stakeholders have different concerns:

Customers: schedule and budget estimates, feasibility, risk assessment, requirements

understanding, progress, product line compatibility.

Users: consistency with requirements and usage scenarios, potential for accommodating growth,

quality attributes.

Architects and systems engineers: product line compatibility, requirements changes, tradeoff

analyses, completeness and consistency, balance among risk, quality and usability.

Developers: Sufficiency of requirements detail and usage scenario descriptions, frameworks for

component selection or development, resolution of development risk, product line

compatibility, sufficiency of the development environment.

MADHAVI PINGILI 50

Maintainers: sufficiency of product and documentation artifacts, understandability,

interoperability. with existing systems, sufficiency of maintenance environment.

Others: regulatory agencies, independent verification and validation contractors, venture capital

investors, subcontractors, associate contractors, and sales and marketing teams.

Life-Cycle Objective Milestone: These milestones occur at the end of the inception phase. The

goal is to present to all stakeholders a recommendation on how to proceed with development,

including a plan, estimated cost and schedule, and expected benefits and cost savings.

Life- Cycle Architecture Milestone: These milestones occur at the end of the elaboration

phase. Primary goal is to demonstrate an executable architecture to all stakeholders. A more

detailed plan for the construction phase is presented for approval. Critical issues relative to

requirements and the operational concept are addressed.

Initial Operational Capability Milestone: These milestones occur late in the construction

phase. The goals are to assess the readiness of the software to begin the transition into customer /

user sites and to authorize the start of acceptance testing.

Product Release Milestone: Occur at the end of the transition phase. The goal is to assess the

completion of the software and its transition to the support organization, if any. The results of

acceptance testing are reviewed, and all open issues are addressed and software quality metrics are

reviewed to determine whether quality is sufficient for transition to the support organization.

MINOR MILESTONES:

The number of iteration-specific, informal milestones needed depends on the content and length

of the iteration.

Iterations which have one-month to six-month duration have only two milestones are needed:

the iteration readiness review and iteration assessment review. For longer iterations some other

intermediate review points are added.

All iterations are not created equal. An iteration take different forms and priorities , depending

on where the project is in the life cycle.

Early iterations focus on analysis and design. Later iterations focus on completeness,

consistency, usability and change management.

Iteration Readiness Review: This informal milestone is conducted at the start of each iteration

to review the detailed iteration plan and the evaluation criteria that have been allocated to this

iteration.

Iteration Assessment Review: This informal milestone is conducted at the end of each

iteration to

assess the degree to which the iteration achieved its objectives and to review iteration results, test

results, to determine amount of rework to be done, to review impact of the iteration results on the

plan for subsequent iterations.

MADHAVI PINGILI 51

PERIODIC STATUS ASSESSMENTS:

- These are management reviews conducted at regular intervals (monthly, quarterly) to address

progress and quality of project and maintain open communication among all stakeholders.

 The main objective of these assessments is to synchronize all stakeholders expectations and also

serve as project snapshots. Also provide,

1) A mechanism for openly addressing, communicating, and resolving management issues,

technical issues, and project risks.

2) A mechanism for broadcast process, progress, quality trends, practices, and experience

information to and from all stakeholders in an open forum.

3) Objective data derived directly from on-going activities and evolving product

configurations.

Iterative Process Planning:

- Like software development, project planning is also an iterative process.

- Like software, plan is also an intangible one. Plans have an engineering stage, during which the

plan is developed, and a production stage, where the plan is executed.

MADHAVI PINGILI 52

Work breakdown structures:

- Work breakdown structure is the “architecture” of the project plan and also an architecture for

financial plan.

- A project is said to be in success, if we maintain good work breakdown structure and its

synchronization with the process frame work.

- A WBS is simply a hierarchy of elements that decomposes the project plan into discrete work

tasks and it provides:

1) A pictorial description of all significant work.

2) A clear task decomposition for assignment of responsibilities.

3) A framework for scheduling, budgeting, and expenditure tracking.

Conventional WBS issues:

Conventional work breakdown structures commonly suffer from three fundamental faults.

1) Conventional WBS is prematurely structured around the product design:

Management

System requirements and design

Subsystem 1

Component 11

{ Requirements, Design, Code, Test, Documentation, . . . }

Component 1N

{ Requirements, Design, Code, Test, Documentation, . . . }

Subsystem M

-do-

Integration and test

{ Test Planning, Test procedure preparation, Testing, Test reports }

Other support areas

{ Configuration control, Quality assurance, System administration }

Fig: Conventional WBS, following the product hierarchy
--

- It is a typical CWBS that has been structured primarily around the subsystem of its product

architecture, then further decomposed into the components of each subsystem.

- Once this structure is embedded in the WBS and then allocate to responsible managers with

budgets, schedules, and expected deliverables, a concrete planning foundation has been set that is

difficult and expensive to change.

2) CWBS are prematurely decomposed, planned, and budgeted in either too little or too much

detail.

CWBS are project-specific, and cross-project comparisons are usually difficult or impossible.

EVOLUTIONARYWBS:

MADHAVI PINGILI 53

- It organizes the planning elements around the process framework rather than the product

framework.

- It better put up the expected changes in the evolving plan.

WBS organizes the hierarchy into three levels:

1) First-level elements: WBS elements are the workflows and are allocated to single team,

provides the structure for the purpose of planning and comparison with the other projects.

2) Second-level elements: elements are defined for each phase of the life cycle. These elements

allow the faithfulness of the plan to evolve more naturally with the level of understanding of the

requirements and architecture, and the risks therein.

3) Third-level elements:

- these elements are defined for the focus of activities that produce the artifacts of each phase.

- These elements may be the lowest level in the hierarchy that collects the cost of discrete artifacts

for a given phase, or they may be decomposed further into several lower level

activities that, taken together, produce a single artifact.

A Management (1st level)

AA Inception phase management (2nd level)

AAA (3rd level)

AAB

. . .

AB Elaboration phase management

ABA

ABB

. . .

AC Construction phase management

ACA

ACB

AD Transition phase management

ADA

ABB

B Environment

-do-

C Requirements

-do-

D Design

-do-

E Implementation

-do-

F Assessment

-do-

G Deployment

-do-

Fig: Default work breakdown structure

MADHAVI PINGILI 54

- The above structure is a starting point only it need to be tailored to the specifics of a project in

many

ways:

1) Scale 2) Organizational structure

3) Degree of custom development 4) Business context

5) Precedent experience

- Another important attribute of a good WBS is that the planning fidelity inherent in each

element is commensurate with the current life-cycle phase and project state.

PLANNING GUIDELINES:

- Software projects span a broad range of application domains.

- It is valuable but risky to make specific planning suggestions independent of project context.

- Planning provides a skeleton of the project from which the management people can decide the

starting point of the project.

MADHAVI PINGILI 55

- In order to proper plan it is necessary to capture the planning guidelines from most expertise and

experience people.

- Project-independent planning advice is also risky. Adopting the planning guidelines blindly

without being adapted to specific project circumstances is risk.

Two simple guidelines when a project is initiated or assessed:

1) A default allocation of costs among the first-level WBS elements.
--

- The above table provides default allocation for budgeted costs of each first-level WBS element.

- Sometimes these values may vary across projects but this allocation provides a good benchmark

for assessing the plan by understanding the foundation for deviations from these guidelines.

- It is cost allocation table not the effort allocation.

2) Allocation of effort and schedule across the life-cycle phases

THE COST AND SCHEDULE ESTIMATING PROCESS

Project plans need to be derived from two perspectives:

1) Forward-looking, top-down approach: It starts with an understanding requirements and

constraints, derives a macro-level budget and schedule, then decomposes these elements

into lower level budgets and intermediate milestones.

From this perspective the following planning sequences would occur:

a) The software project manager develops a characterization of the overall size, process,

environment, people, and quality required for the project.

b) A macro-level estimate of the total effort and schedule is developed using a software cost

estimation model.

c) The software project manager partitions the estimate for the effort into a top-level WBS using

MADHAVI PINGILI 56

guidelines (table 10-1) and also partitions the schedule into major milestone dates and partition the

effort into a staffing profile using guidelines (table 10-2).

d) Subproject managers are given the responsibility for decomposing each of the WBS elements

into lower levels using their tip-level allocation, staffing profile, and major milestone dates as

constraints.

2) Backward-looking, bottom-up approach: We start with the end in mind, analyze the

micro-level budgets and schedules, then sum all these elements into higher level budgets

and intermediate milestones. This approach tends to define the WBS from the lowest levels

upward. From this perspective, the following planning sequences would occur:

a) The lowest level WBS elements are elaborated into detailed tasks. These estimates tend to

incorporate the project-specific parameters in an exaggerated way.

b) Estimates are combined and integrated into higher level budgets and milestones.

c) Comparisons are made with the top-down budgets and schedule milestones. Gross differences

are assessed and adjustments are made in order to converge on agreement between the topdown

and bottom-up estimates.

- These two planning approaches should be used together, in balance, throughout the life cycle of

the project.

- During the engineering stage, the top-down perspective will dominate because there is usually

not enough depth of understanding nor stability in the detailed task sequences to perform credible

bottomup planning.

- During the production stage, there should be enough precedent experience and planning fidelity

that the bottom-up planning perspective will dominate.

- By then, the top-down approach should be well tuned to the project specific parameters, so it

should be used more as a global assessment technique.

THE ITERATION PLANNING PROCESS:

MADHAVI PINGILI 57

PRAGMATIC PLANNING:

--

--

MADHAVI PINGILI 58

UNIT 5
PROJECT CONTROL & PROCESS INSTRUMENTATION

Software Metrics:
Software metrics are used to implement the activities and products of the software development
process. Hence, the quality y of the software products and the achievements in the development
process can be determined using the software metrics.

Need for Software Metrics:

1. Software metrics are needed for calculating the cost and schedule of a software product
with great accuracy.

2. Software metrics are required for making an accurate estimation of the progress.
3. The metrics are also required for understanding the quality of the software product.

Indicators:
An indicator is a metric or a group of metrics that provides an understanding of the software
process or software product or a software project. A soft ware engineer assembles measures and
produce metrics from which the indicators can be derived. Two types of indicators are:

(i) Management indicators.
(ii) Quality indicators.

Management Indicators The management indicators i.e., technical progress, financial status and
staffing progress are used to determine whether a project is on budget and on schedule. The
management indicators that indicate financial status are based on earned value system.

Quality Indicators The quality indicators are based on the measurement of the changes occurred
in software.

Seven Core Metrics of Software Project
Software metrics instrument the activities and products of the software development/
integration process. Metrics values provide an important perspective for managing the process.
The most useful metrics are extracted directly from the evolving artifacts. There are seven core
metrics that are used in managing a modern process.

MADHAVI PINGILI 59

1. Work and progress:
This metric measure the work performed over time. Work is the effort to be accomplished to
complete a certain set of tasks. The various activities of an iterative development project can be
measured by defining a planned estimate of the work in an objective measure, then tracking
progress (work completed overtime) against that plan.

The default perspectives of this metric are:
Software architecture team: - Use cases demonstrated.
Software development team: - SLOC under baseline change management, SCOs closed
Software assessment team: - SCOs opened, test hours executed and evaluation criteria meet.
Software management team: - milestones completed.

The below figure shows expected progress for a typical project with three major releases

2. Budgeted cost and expenditures:
This metric measures cost incurred over time. Budgeted cost is the planned expenditure profile
over the life cycle of the project. To maintain management control, measuring cost expenditures
over the project life cycle is always necessary. Tracking financial progress takes on an organization
- specific format. Financial performance can be measured by the use of an earned value system,

MADHAVI PINGILI 60

which provides highly detailed cost and schedule insight. The basic parameters of an earned value
system, expressed in units of dollars, are as follows:

Expenditure Plan - It is the planned spending profile for a project over its planned schedule.
Actual progress - It is the technical accomplishment relative to the planned progress underlying
the spending profile.
Actual cost - It is the actual spending profile for a project over its actual schedule.
Earned value - It is the value that represents the planned cost of the actual progress.
Cost variance - It is the difference between the actual cost and the earned value.
Schedule variance - It is the difference between the planned cost and the earned value.
Of all parameters in an earned value system, actual progress is the most subjective assessment.
Because most managers know exactly how much cost they have incurred and how much schedule
they have used, the variability in making accurate assessments is centered in the actual progress
assessment. The default perspectives of this metric are cost per month, full-time staff per month
and percentage of budget expended.

3. Staffing and team dynamics:
This metric measure the personnel changes over time, which involves staffing additions and
reductions over time. An iterative development should start with a small team until the risks in
the requirements and architecture have been suitably resolved. Depending on the overlap of
iterations and other project specific circumstances, staffing can vary. Increase in staff can slow
overall project progress as new people consume the productive team of existing people in coming
up to speed. Low attrition of good people is a sign of success. The default perspectives of this
metric are people per month added and people per month leaving. These three management
indicators are responsible for technical progress, financial status and staffing progress.

The below figure shows Typical staffing profile

MADHAVI PINGILI 61

4. Change traffic and stability:
This metric measures the change traffic over time. The number of software change orders
opened and closed over the life cycle is called change traffic. Stability specifies the relationship
between opened versus closed software change orders. This metric can be collected by change
type, by release, across all releases, by term, by components, by subsystems, etc.

The below figure shows stability expectation over a healthy project’s life cycle

5. Breakage and modularity:
This metric measures the average breakage per change over time. Breakage is defined as the
average extent of change, which is the amount of software baseline that needs rework and
measured in source lines of code, function points, components, subsystems, files or other units.
Modularity is the average breakage trend over time. This metric can be collected by reworked
SLOC per change, by change type, by release, by components and by subsystems.

6. Rework and adaptability:
This metric measures the average rework per change over time. Rework is defined as the average
cost of change which is the effort to analyze, resolve and retest all changes to software baselines.
Adaptability is defined as the rework trend over time. This metric provides insight into rework
measurement. All changes are not created equal. Some changes can be made in a staff hour,
while others take staff-weeks. This metric can be collected by average hours per change, by
change type, by release, by components and by subsystems.

7. MTBF and Maturity:
This metric measures defect rater over time. MTBF (Mean Time Between Failures) is the average
usage time between software faults. It is computed by dividing the test hours by the number of
type 0 and type 1 SCOs. Maturity is defined as the MTBF trend over time. Software errors can be
categorized into two types deterministic and nondeterministic.
Deterministic errors are also known as Bohr-bugs and nondeterministic errors are also called as
Heisen-bugs. Bohr-bugs are a class of errors caused when the software is stimulated in a certain
way such as coding errors. Heisen-bugs are software faults that are coincidental with a certain

MADHAVI PINGILI 62

probabilistic occurrence of a given situation, such as design errors. This metric can be collected
by failure counts, test hours until failure, by release, by components and by subsystems. These
four quality indicators are based primarily on the measurement of software change across
evolving baselines of engineering data.

MADHAVI PINGILI 63

MADHAVI PINGILI 64

METRICS AUTOMATION

Many opportunities are available to automate the project control activities of a software project.
A Software Project Control Panel (SPCP) is essential for managing against a plan. This panel
integrates data from multiple sources to show the current status of some aspect of the project.
The panel can support standard features and provide extensive capability for detailed situation
analysis. SPCP is one example of metrics automation approach that collects, organizes and
reports values and trends extracted directly from the evolving engineering artifacts.

SPCP:
To implement a complete SPCP, the following are necessary.

 Metrics primitives - trends, comparisons and progressions
 A graphical user interface.
 Metrics collection agents
 Metrics data management server
 Metrics definitions - actual metrics presentations for requirements progress,

implementation progress, assessment progress, design progress and other progress
dimensions.

 Actors - monitor and administrator.
Monitor defines panel layouts, graphical objects and linkages to project data. Specific monitors
called roles include software project managers, software development team leads, software
architects and customers. Administrator installs the system, defines new mechanisms, graphical
objects and linkages.
The whole display is called a panel. Within a panel are graphical objects, which are types of
layouts such as dials and bar charts for information. Each graphical object displays a metric. A
panel contains a number of graphical objects positioned in a particular geometric layout. A metric
shown in a graphical object is labeled with the metric type, summary level and insurance name
(line of code, subsystem, server1). Metrics can be displayed in two modes – value, referring to a
given point in time and graph referring to multiple and consecutive points in time. Metrics can
be displayed with or without control values. A control value is an existing expectation either
absolute or relative that is used for comparison with a dynamically changing metric. Thresholds
are examples of control values.

The basic fundamental metrics classes are trend, comparison and progress.

MADHAVI PINGILI 65

The format and content of any project panel are configurable to the software project manager's
preference for tracking metrics of top-level interest. The basic operation of an SPCP can be
described by the following top -level use case.
i. Start the SPCP

MADHAVI PINGILI 66

ii. Select a panel preference
iii. Select a value or graph metric
iv. Select to superimpose controls
v. Drill down to trend
vi. Drill down to point in time.
vii. Drill down to lower levels of information
viii. Drill down to lower level of indicators.

PROCESS DISCRIMINANTS Or TRANSITIONING TO AN ITERATIVE PROCESS

Or TAILORING THE PROCESS

In tailoring the management process to a specific domain or project, there are two dimensions of

discriminating factors: technical complexity and management complexity. A process framework is not

a project-specific process implementation with a well-defined recipe for success. The process

framework must be configured to the specific characteristics of the project. The process discriminants

are organized around six process parameters - scale, stakeholder cohesion, process flexibility, process

maturity, architectural risk and domain experience.

1. Scale: the scale of the project is the team size which drives the process configuration more than any

other factor. There are many ways to measure scale, including number of sources lines of code, number

of function points, number of use cases and number of dollars. The primary measure of scale is the size

of the team. Five people are an optimal size for an engineering team. A team consisting of 1 member

is said to be trivial, a team of 5 is said to be small, a team of 25 is said to be moderate, a team of 125

is said to be large, a team of 625 is said to be huge and so on. As team size grows, a new level of

personnel management is introduced at each factor of 5.10 Trivial - sized projects require almost no

management overhead. Only little documentation is required. Workflow is single-threaded.

Performance is dependent on personnel skills. Small projects consisting of 5 people require very little

management overhead. Project milestones are easily planned, informally conducted and changed.

There are a small number of individual workflows. Performance depends primarily on personnel skills.

Process maturity is unimportant. Moderate-sized projects consisting of 25 people require very

moderate management overhead. Project milestones are formally planned and conducted. There are a

small number of concurrent team workflows, each team consisting of multiple individual workflows.

Performance is highly dependent on the skills of key personnel. Process maturity is valuable. Large

projects consisting of 125 people require substantial management overhead.

Project milestones are formally planned and conducted. A large number of concurrent team workflows

are necessary, each with multiple individual workflows. Performance is highly dependent on the skills

of the key personnel. Process maturity is necessary. Huge projects consisting of 625 people require

substantial management overhead. Project milestones are very formally planned and conducted. There

are a very large number of concurrent team workflows, each with multiple individual workflows.

Performance is highly dependent on the skills of the key personnel. Project performance is still

dependent on average people.

2. Stakeholder Cohesion or Contention: The degree of cooperation and coordination among

stakeholders (buyers, developers, users, subcontractors and maintainers) significantly drives the

specifics of how a process is defined. This process parameter ranges from cohesive to adversarial.

MADHAVI PINGILI 67

Cohesive teams have common goals, complementary skills and close communications. Adversarial

teams have conflicting goals, competing and incomplete skills, and less-than-open communication.

3. Process Flexibility or Rigor: The implementation of the project's process depends on the

degree of rigor, formality and change freedom evolved from projects contract (vision document,

business case and development plan). For very loose contracts such as building a commercial product

within a business unit of a software company, management complexity is minimal. For a very rigorous

contract, it could take many months to authorize a change in a release schedule.

4. Process Maturity: The process maturity level of the development organization is the key driver of

management complexity. Managing a mature process is very simpler than managing an immature

process. Organization with a mature process have a high level of precedent experience in developing

software and a high level of existing process collateral that enables predictable planning and execution

of the process. This sort of collateral includes well-defined methods, process automation tools, trained

personnel, planning metrics, artifact templates and workflow templates.

5. Architectural Risk: The degree of technical feasibility is an important dimension of defining a

specific projects process. There are many sources of architecture risk. They are (1) system performance

which includes resource utilization, response time, throughout and accuracy, (2) robustness to change

which includes addition of new features & incorporation of new technology and (3) system reliability

which includes predictable behavior and fault tolerance.

6. Domain Experience: The development organization's domain experience governs its ability to

converge on an acceptable architecture in a minimum no of iterations.

MADHAVI PINGILI 68

7. NEXT GENERATION SOFTWARE ECONOMICS

8.1 MODERN PROJECT PROFILES

Continuous Integration

In the iterative development process, firstly, the overall architecture of the project is created

and then all the integration steps are evaluated to identify and eliminate the design errors. This

approach eliminates problems such as downstream integration, late patches and shoe-horned

software fixes by implementing sequential or continuous integration rather than implementing

large-scale integration during the project completion.

 Moreover, it produces feasible and a manageable design by delaying the ‘design

breakage’ to the engineering phase, where they can be efficiently resolved. This can be

one by making use of project demonstrations which forces integration into the design

phase.

 With the help of this continuous integration incorporated in the iterative development

process, the quality tradeoffs are better understood and the system features such as

system performance, fault tolerance and maintainability are clearly visible even before

the completion of the project.

MADHAVI PINGILI 69

 In the modern project profile, the distribution of cost among various workflows or project

is completely different from that of traditional project profile as shown below:

Software Engineering Workflows Conventional Process Expenditures Modern process Expenditures

Management 5% 10%

Environment 5% 10%

Requirements 5% 10%

Design 10% 15%

Implementation 30% 25%

Assessment 40% 25%

Deployment 5% 5%

Total 100% 100%

As shown in the table, the modern projects spend only 25% of their budget for integration and

Assessment activities whereas; traditional projects spend almost 40% of their total budget for

these activities. This is because, the traditional project involve inefficient large-scale integration

and late identification of design issues.

1.2 Early Risk Resolution

 In the project development lifecycle, the engineering phase concentrates on

identification and elimination of the risks associated with the resource commitments just

before the production stage. The traditional projects involve, the solving of the simpler

steps first and then goes to the complicated steps, as a result the progress will be visibly

MADHAVI PINGILI 70

good, whereas, the modern projects focuses on 20% of the significant requirements, use

cases, components and risk and hence they occasionally have simpler steps.

 To obtain a useful perspective of risk management, the project life cycle has to be applied

on the principles of software management. The following are the 80:20 principles.

 The 80% of Engineering is utilized by 20% of the requirements.

 Before selecting any of the resources, try to completely understand all the requirement

because irrelevant resource selection (i.e., resources selected based on prediction) may

yield severe problems.

 80% of the software cost is utilized by 20% of the components

 Firstly, the cost-critical components must be elaborated which forces the project to focus

more on controlling the cost.

 80% of the bugs occur because of 20% of the components

 Firstly, the reliability-critical components must be elaborated which give sufficient time

for assessment activities like integration and testing, in order to achieve the desired level

of maturity.

 80% of the software scrap and rework is due to 20% if the changes.

 The change-critical components r elaborated first so that the changes that have more

impact occur when the project is matured.

 80% of the resource consumption is due to 20% of the components.

 Performance critical components are elaborated first so that, the trade-offs with

reliability; changeability and cost-consumption can be solved as early as possible.

 80% of the project progress is carried-out by 20% of the people

 It is important that planning and designing team should consist of best processionals

because the entire success of the project depends upon a good plan and architecture.

 The following figure shows the risk management profile of a modern project.

MADHAVI PINGILI 71

1.3 Evolutionary requirements

 The traditional methods divide the system requirements into subsystem requirements

which in turn gets divided into component requirements. These component requirements

are further divided into unit requirements. The reason for this systematic division is to

simplify the traceability of the requirements.

 In the project life cycle the requirements and design are given the first and the second

preference respectively. The third preference is given to the traceability between the

requirement and the design components these preferences are given in order to make

the design structure evolve into an organization so it parallels the structure of the

requirements organization.

 Modern architecture finds it difficult to trace the requirements because of the following

reasons.

 Usage of Commercial components

 Usage of legacy components

MADHAVI PINGILI 72

 Usage of distributed resources

 Usage of object oriented methods.

 Moreover, the complex relationships such as one-one, many-one, one-many, conditional,

time-based and state based exists the requirements statement and the design elements.

As shown in the above figure, the top category system requirements are kept as the vision

whereas, those with the lower category are evaluated. The motive behind theses artifacts

is to gain fidelity with respect to the progress in the project lifecycle. This serves as a

significant different from the traditional approach because, in traditional approach the

fidelity is predicted early in the project life cycle.

MADHAVI PINGILI 73

8.1.4 Teamwork among stakeholders

 Most of the characteristics of the classic development process worsen the stakeholder

relationship s which in turn makes the balancing of requirement product attributes and

plans difficult. An iterative process which has a good relationship between the

stakeholders mainly focuses on objective understanding by each and every individual

stakeholder. This process needs highly skilled customers, users and monitors which have

experience in both the application as well as software. Moreover, this process requires

an organization whose focus is on producing a quality product and achieves customer

satisfaction.

 The table below shows the tangible results of major milestones in a modern process.

 Obvious result  Actual result

 Demonstration at early stage reveals the

design issued and uncertainty in a

tangible form.

Demonstration firstly reveals the significant assets

 and risks associated with complicated software systems such that

they can be worked out at the time of setting the life-cycle goals.

 Non-Complaint design Various perspectives like requirements use cases etc are observed

in order to completely understand the compliance.

 Issues of influential requirements are

reveals but without traceability

Both the requirement changes and the design trade-offs are

Considerably balanced.

 The design is considered to be “guilty

until

its innocency is proved.

The engineering issues can be integrated into the succeeding iteration’s

Plans.

MADHAVI PINGILI 74

 From the above table, it can be observed that the progress of the project is not possible

unless all the demonstration objectives are satisfied. This statement does not present the

renegotiation of objectives, even when the demonstration results allow the further

processing of tradeoffs present in the requirement, design, plans and technology.

 Modern iterative process that rely on the results of the demonstration need al its

stakeholders to be well-educated and with a g good analytical ability so as to distinguish

between the obviously negative results and the real progress visible. For example, an

early determined design error can be treated as a positive progress instead to a major

issue.

1.5 Principles of Software Management

 Software management basically relies on the following principles, they are,

1. Process must be based on architecture-first approach

 If the architecture is focused at the initial stage, then there will be a good foundation

for almost 20% of the significant stuff that are responsible for the overall success of the

project. This stuff include the requirements, components use cases, risks and errors. In

other words, if the components that are being involved in the architecture are well known

then the expenditure causes by scrap and rework will be comparatively less.

2. Develop an iterative life-cycle process that identifies the risks at an early stage

 An iterative process supports a dynamic planning framework that facilitates the risk

management predictable performance moreover, if the risks are resolved earlier, the

predictability will be more and the scrap and rework expenses will be reduced.

3. After the design methods in-order to highlight components-based development.

 The quantity of the human generated source code and the customized development

can be reduced by concentrating on individual components rather than individual lines-

of-code. The complexity of software is directly proportional to the number of artifacts it

contains that is, if the solution is smaller then the complexity associated with its

management is less.

4. Create a change management Environment

 Highly-controlled baselines are needed to compensate the changes caused by various

teams that concurrently work on the shared artifacts.

MADHAVI PINGILI 75

5. Improve change freedom with the help of automated tools that support round-trip

engineering.

 The roundtrip-engineering is an environment that enables the automation and

synchronization of engineering information into various formats. The engineering

information usually consists requirement specification, source code, design models test

cases and executable code. The automation of this information allows the teams to focus

more on engineering rather than dealing with over head involved.

Design artifacts must be captured in model based notation.

 The design artifacts that are modeled using a model based notation like UML, are rich

in graphics and texture. These modeled artifacts facilitate the following tasks.

 Complexity control

 Objective fulfillment

 Performing automated analysis

7. Process must be implemented or obtaining objective quality control and estimation

of progress.

 The progress in the lifecycle as well as the quality of intermediately products must be

estimated and incorporated into the process. This can be done with the help of well

defined estimation mechanism that are directly derived from the emerging artifacts.

These mechanisms provide detailed information about trends and correlation with

requirements.

8. Implement a Demonstration-based Approach for Estimation of intermediately

Artifacts

 This approach involves giving demonstration on different scenarios. It facilitates earl

integration and better understanding of design trade-offs. Moreover, it eliminates

architectural defects earlier in the lifecycle. The intermediately results of this approach

are definitive.

The Points Increments and generations must be made based on the evolving levels of

detail

MADHAVI PINGILI 76

 Here, the ‘levels of detail’ refers to the level of understanding requirements and

architecture. The requirements, iteration content, implementations and acceptance

testing can be organized using cohesive usage scenarios.

10. Develop a configuration process that should be economically scalable

 The process framework applied must be suitable for variety of applications. The

process must make use of processing spirit, automation, architectural patterns and

components such that it is economical and yield investment benefits.

1.6 Best Practices Associated with software Management

 According to airline software council, there are about nine best practices associated with

software management. Theses practices are implemented in order to reduce the

complexity of the larger projects and to improve software management discipline.

 The following are the best practices of software management:

1. Formal Risk Management: Earlier risk management can be done by making use of

iterative life cycle process that identifies the risks at early stage.

2. Interface Settlement: The interface settlement is one of the important aspects of

architecture first approach because; obtaining architecture involves the selection of

various internal and external interfaces that are incorporated into the architecture.

3. Formal Inspections: There are various defect removal strategies available. Formal

inspection is one of those strategies. However this is the least important strategy because

the cost associated with human recourses is more and is defect detection rate for the

critical architecture defects is less.

4.Management and scheduling based on metrics: This principle is related to the model

based approach and objective quality control principles. It states to use common

notations fro the artifacts so that quality and progress can be easily measured.

5. Binary quality Gates at the inch-pebble level: The concept behind this practice is quite

confusing. Most of the organizations have misunderstood the concept and have

developed an expensive and a detailed plan during the initial phase of the lifecycle, but

later found the necessity to change most of their detailed plan due to the small changes

in requirements or architectural. This principle states that first start planning with an

understanding of requirements and the architecture. Milestones must be established

during engineering stage and inch-pebble must be followed in the production stage.

MADHAVI PINGILI 77

6. Plan versus visibility of progress throughout the progress: This practice involves a direct

communication between different team members of a project so that, they can discuss

the significant issues related to the project as well as notice the progress of the project

in-comparison to their estimated progress

7. Identifying defects associated with the desired quality: This practice is similar to the

architecture-first approach and objective quality control principles of software

management. It involves elimination of architectural defects early in the life-cycle,

thereby maintaining the architectural quality so as to successfully complete the project.

8. Configuration management: According to Airline software council, configuration

management serves as a crucial element for controlling the complexity of the artifacts

and for tracing the changes that occur in the artifacts. This practice is similar to the change

management principle of software management and prefers automation of components

so as to reduce the probability of errors that occur in the large-scale projects.

9.Disclose management accountability: The entire managerial process is disclosed to al

the people dealing with the project.

NEXT GENERATION SOFTWARE ECONOMICS

2.1 Next generation software cost models

 In comparison to the current generation software cost modes, the next generation

software cost models should perform the architecture engineering and application

production separately. The cost associated with designing, building, testing and

maintaining the architecture is defined in terms of scale, quality, process, technology and

the team employed.

 After obtaining the stable architecture, the cost of the production is an exponential

function of size, quality and complexity involved.

 The architecture stage cost model should reflect certain diseconomy of scale (exponent

less than 1.0) because it is based on research and development-oriented concerns.

Whereas the production stage cost model should reflect economy of scale (exponent less

than 1.0) for production of commodities.

 The next generation software cost models should be designed in a way that, they can

assess larger architectures with economy of scale. Thus, the process exponent will be less

MADHAVI PINGILI 78

than 1.0 at the time of production because large systems have more automated proves

components and architectures which are easily reusable.

 The next generation cost model developed on the basis of architecture-first approach is

shown below.

 At architectural engineering Stage

 A Plan with less fidelity and risk resolution

 It is technology or schedule-based

 It has contracts with risk sharing

 Team size is small but with experienced professionals.

 The architecture team, consists of small number of software engineers

 The application team consists of small number of domain engineers.

 The output will be an executable architecture, production and requirements

 The focus of the architectural engineering will be on design and integration of entities as

well as host development environment.

 It contains two phases they are inspection and elaboration.

• At Application production stage

MADHAVI PINGILI 79

• A plan with high fidelity and lower risk

• It is cost-based

• It has fixed-priced contracts

• Team size is large and diverse as needed.

• Architecture team consists of a small number of software engineers.

• The Application team may have nay number of domain engineers.

• The output will be a function which is deliverable and useful, tested

 baseline and warranted quality.

• The focus of the application production will be on implementing testing

 and maintaining target technology.

It contains two phases they are construction and transition.

Total Effort = Func(TechnologyArch, ScaleArch, Quality Arch, Process Arch) +

Func(TechnologyApp, ScaleApp, Quality App, Process App)

Total Time = Func(ProcessArch, EffortArch) + Func(ProcessApp, EffortApp,)

 The next generation infrastructure and environment automated various management

activities with low effort. It relieves many of the sources of diseconomy of scale by reusing

the common processes that are repetitive in a particular project. It also reuses the

common outcomes of the project. The prior experience and matured processes utilized

MADHAVI PINGILI 80

in these types of models eliminate the scrap rework sources. Here, the economics of scale

will be affected.

 The architecture and applications of next generation cost models have difference scales

and sized which represents the solution space. The size can be computed inters of SLOC

or megabytes of executable code while the scale can be computed in 0-terms of

components, classes, processes or nodes. The requirement or use cases of solution space

are different from that of a problem space. Moreover, there can be more than one

solution to a problem. Where cost serves as a key discriminator. The cost estimates must

be determined to find an optimal solution. If an optional solution is not found then

different solution s need to be selected or to change the problem statement.

 A strict notation must be applied for design artifacts so, that the prediction of a design

scale can be improved. The Next-generation software cost model should automate the

process of measuring design scale directly from UML diagrams. There should be two

major improvements. There are,

 Separate architectural engineering stage from application production stage. This

will yield greater accuracy and more precision of lifecycle estimate.

 The use of rigorous design notations. This will enable the automation and

standardization of scale measure so that they can be easily traced which helps to

determine the total cost associated with production.

 The next generation software process has two potential breakthroughs, they are,

 Certain integrated tools would be available that automates the information

transition between the requirements, design, implementation and deployment

elements. These tools facilitate roundtrip engineering between various artifacts

of engineering.

 It will reduce the four sets of fundamental technical artifacts into three sets. This

is achieved by automating the activities related to human-generated source code

so as to eliminate the need for a separate implementation set.

2.2 ‘An organizational manager should strive for making the transition to a

modern process’.

 The transition to a modern process should be made based on the following quotations

laid by Boehm.

MADHAVI PINGILI 81

1. Identifying and solving a software problem in the design phase is almost 100

times cost effective than solving the same problem after delivery.

 This quotation or metric serves as a base for most software processes. Modern

processes, component-based development techniques and architectural

frameworks mainly focus on enhancing this relationship. The architectural errors

are solved by implementing an architecture-first approach. Modern process plays

a crucial role in identification of risks

2. Software Development schedules can be compressed to a Maximum of 25

percent

 If we want a reduction in the scheduled time, then we must increase the

personnel resources which inturn increases the management overhead. The

management overhead, concurrent activities scheduling, sequential activities

conservation along some resource constraints will have the flexibility limit of

about 25 percent.

 This metric must be acceptable by the engineering phase which consists of

detailed system content if we have successfully completed the engineering then

compression in the production stage will be automatically flexible. The concurrent

development must be possible irrespective of whether a business organization

implements the engineering phase over multiple projects or whether a project

implements the engineering phase over multiple incremental stages.

3. The maintenance cost will be almost double the development cost

 Most o the experts in the software industry find it difficult to maintain the

software than development. The ratio between development and maintenance

can be measured by computing productivity cost. One of the interesting fact of

iterative development is that the dividing line between the development and

maintenance is vanishing. Moreover, a good iterative process and architecture will

cause the reduction in the scrap and rework levels so this ratio (i.e.,) 2:1 can be

reduced to 1:1.

4. Both the software development cot and the maintenance cost are

dependent on the number of lines in the source code.

 This metric was applicable to the conventional cost models which were lacking

in-terms of commercial components, reusing techniques, automated code

MADHAVI PINGILI 82

generators etc. The implementation of commercial components, reusing

techniques and automated code generators will make this metric inappropriate.

However, the development cost is still dependent on the commercial

components, reuse technique and automatic code generators and their

integration.

 The next-generation cost models should focus more on the number of

components and their integration efforts rather than on the number of lines of

code.

5. Software productivity mainly relies on the type of people employed

 The personal skills, team work ability and the motivation of employees are the

crucial factors responsible for the success and the failure of any project. The next-

generation cost models failure should concentrate more on employing a highly

skilled team of professionals at engineering stage.

6. The ratio of software to hardware cost is increasing.

 As the computers are becoming more and more popular, the need for software

and hardware applications is also increasing. The hardware components are

becoming cheaper whereas, the software applications are becoming more

complicated as a result, highly skilled professionals needed for development and

controlling the software applications, the in turn increases the cost. In 1955 the

software to hardware cost ratio was 15:85 and in 1985 this ratio was 85:15. This

ratio continuously increases with respect to the need for variety of software

applications. Certain software applications have already been developed which

provides automated configuration control and analysis of quality assurance. The

next-generation cost models must focus on automation of production and testing.

7. Only 15% of the overall software development is dedicated process to

programming.

The automation and reusability of codes have lead to the reduction in

programming effort. Earlier in 1960s, the programming staff was producing about

200 machine instructions per month and in 1970s and 1980s, the machine

instruction count has raised to about 1000 machine instructions. Now as days,

programmers are able to produce several thousand instructions without even

writing few hundreds of them.

MADHAVI PINGILI 83

8. Software system and products cost three times the cost associated with

individual software programs per SLOC software-system products cost 9 times

more than the cost of individual software program.

 In the software development, the cost of each instruction depends upon the

complexity of the software. Modern processes and technologies must reduce this

diseconomy of scale. The economy of the scale must be achievable under the

customer specific software systems with a common architecture, common

environment and common process.

9. 60% of Errors are caught by walkthrough

 The walkthrough and other forms of human inspection catch only the surface

and style issues. However, the critical issues are not caught by the walkthroughs

so, this metric doesn’t prove to the reliable.

10. Only 20% of the contributors are responsible for the 80% of the

contributions.

 This metric is applicable to most of the engineering concepts such as 80:20

principles of software project management. The next generation software process

must facilitate the software organizations in achieving economic scale.

3. MODERN PROCESS TRANSITIONS

3.1 Indications of a successful project transition to a modern culture

Several indicators are available that can be observed in order to distinguish

projects that have made a genuine cultural transition from projects that only

pretends. The following are some rough indicators available.

1. The lower-level managers and the middle level managers should participate

in the project development

 Any organization which has an employee count less than or equal to 25 does

not need to have pure managers. The responsibility of the managers in this type

MADHAVI PINGILI 84

of organization will be similar to that of a project manager. Pure managers are

needed when personal resources exceed 25. Firstly, these managers understand

the status of the project them, develop the plans and estimate the results. The

manager should participate in developing the plans. This transition affects the

software project managers.

2. Tangible design and requirements

 The traditional processes utilize tons of paper in order to generate the

documents relevant to the desired project. Even the significant milestones of a

project are expressed via documents. Thus, the traditional process spends most

of their crucial time on document preparation instead of performing software

development activities.

 An iterative process involves the construction of systems that describe the

architecture, negotiates the significant requirements, identifies and resolves the

risks etc. These milestones will be focused by all the stakeholders because they

show progressive deliveries of important functionalities instead of documental

descriptions about the project. Engineering teams will accept this transition of

environment from to less document-driven while conventional monitors will

refuse this transition.

3. Assertive Demonstrations are prioritized

 The design errors are exposed by carrying-out demonstrations in the early

stages of the life cycle. The stake holders should not over-react to these design

errors because overemphasis of design errors will discourage the development

organizations in producing the ambitious future iterating. This does not mean that

stakeholders should bare all these errors. Infact, the stakeholders must follow all

the significant steps needed for resolving these issues because these errors will

sometimes lead to serious down-fall in the project.

 This transition will unmark all the engineering or process issues so, it is mostly

refused by management team, and widely accepted by users, customers and the

engineering team.

4. The performance of the project can be determined earlier in the life cycle.

MADHAVI PINGILI 85

 The success and failure of any project depends on the planning and

architectural phases of life cycle so, these phases must employ high-skilled

professionals. However, the remaining phases may work well an average team.

5. Earlier increments will be adolescent

 The development organizations must ensure that customers and users should

not expect to have good or reliable deliveries at the initial stages. This can be done

by demonstration of flexible benefits in successive increments. The demonstration

is similar to that of documentation but involves measuring of changes, fixes and

upgrades based on the objectives so as to highlight the process quality and future

environments.

6. Artifacts tend to be insignificant at the early stages but proves to be the most

significant in the later stages

 The details of the artifacts should not be considered unless a stable and a useful

baseline is obtained. This transition is accepted by the development team while

the conventional contract monitors refuse this transition.

7. Identifying and Resolving of real issues is done in a systematic order

 The requirements and designs of any successful project arguments along with

the continuous negotiations and trade-offs. The difference between real and

apparent issued of a successful project can easily be determined. This transition

may affect any team of stakeholders.

8. Everyone should focus on quality assurance

 The software project manager should ensure that quality assurance is

integrated in every aspect of project that is it should be integrated into every

individuals role, every artifact, and every activity performed etc. There are some

organizations which maintains a separate group of individuals know as quality

assurance team, this team would perform inspections, meeting and checklist in

order to measure quality assurance. However, this transition involves replacing of

separate quality assurance team into an organizational teamwork with mature

process, common objectives and common incentives. So, this transition is

supported by engineering teams and avoided by quality assurance team and

conventional managers.

9. Performance issues crop up earlier in the projects life cycle

MADHAVI PINGILI 86

 Earlier performance issues are a mature design process but resembles as an

immature design. This transition is accepted by development engineers because

it enables the evaluation of performance tradeoffs in subsequent releases.

10. Automation must be done with appropriate investments

 Automation is the key concept of iterative development projects and must be

done with sufficient funds. Moreover, the stakeholders must select an

environment that supports iterative development. This transition is mainly

opposed by organizational managers.

11. Good software organizations should have good profit margins.

 Most of the contractors for any software contracting firm focus only on

obtaining their profit margins beyond the acceptable range of 5% and 15%. They

don’t look for the quality of finished product as a result, the customers will be

affected. For the success of any software industry, the good quality and at a

reasonable rate them, customer will not worry about the profit the contractor has

made. The bad contractors especially in a government contracting firm will be

against this transition.

3.2 Characteristics of conventional and iterative software

development Process

 The characteristics of the conventional software process are listed below:

1. It evolves in the sequential order (requirement design-code-test).

2. It gives the same preference to all the artifacts, components, requirements etc.

3. It completes all the artifacts of a stage before moving to the other stage in the

project life cycle.

4. It achieves traceability with high-fidelity for al the artifacts present at each life

cycle stage.

 The characteristics of the modern iterative development process framework are listed

below:

1. It continuously performs round-trip engineering of requirements, design, coding

and testing at evolving levels of abstraction.

MADHAVI PINGILI 87

2. It evolves the artifacts depending on the priorities of the risk management.

3. It postpones the consistency analysis and completeness of the artifacts to the later

stages in the life cycle.

4. It achieves the significant drives (i.e. 20 percent) with high-fidelity during the initial

stages of the life cycle.

COCOMO MODEL
The best known and most transparent cost model COCOMO (Constructive costmodel) was

developed by Boehm, which was derived from the analysis of 63 software projects. Boehm

proposed three levels of the model: basic, intermediate and detailed. COCOMO focuses mainly

upon the intermediate mode.

The COCOMO model is based on the relationships between:

Equation 1:- Development effort is related to system size

MM = a.KDSI.b

Equation 2:- Effort and development time

TDEV = c.MM.d

where MM is the effort in man-months.

KDSI is the number of thousand delivered source instructions.

TDEV is the development time.

The coefficients a, b, c and d are dependent upon the 'mode of development which Boehm

classified into 3 distinct modes:

1. Organic - Projects involve small teams working in familiar and stable environments.

Eg: - Payroll systems.

2. Semi - Detached - Mixture of experience within project teams. This lies in between

organic and embedded modes.

MADHAVI PINGILI 88

Eg: Interactive banking system.

3. Embedded: - Projects that are developed under tight constraints, innovative, complex and

have volatility of requirements.

Eg: - nuclear reactor control systems.

Development mode A B C D

Organic 3.2 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 2.8 1.20 2.5 0.32

In the intermediate mode it is possible to adjust the nominal effort obtained from the model by the

influence of 15 cost drivers. These drivers deviate from the nominal figures, where particular

project differ from the average project. For example, if the reliability of the software is very high,

a factor rating of 1.4 can be assigned to that driver. Once all the factors for each driver have been

chosen they are multiplied to arrive at an Effort Adjustment Factor (EAF).

The actual steps in producing an estimate using the intermediate COCOMO model are:

1. Identify the 'mode' of development for the new project.

2. Estimate the size of the project in KDSI to derive a nominal effort prediction.

3. Adjust the 15 cost drivers to reflect your project, producing an error adjustment factor.

4. Calculate the predicted project effort using equation 1 and the effort adjustment factor.

5. Calculate the project duration using equation 2.

Drawbacks:

1. It is hard to accurately estimate KDSI early on in the project, when most effort estimates are

required.

2. Extremely vulnerable to mis-classification of the development mode.

3. Success depends largely on tuning the model to the needs of the organization, using historical

data which is not always available.

Advantages:

1. COCOMO is transparent. It can be seen how it works.

2. Drivers are particularly helpful to the operator to understand the impact of different factors

that affect project costs.

Next-Generation Cost Models
The present software cost models are not well matched to an iterative software process focused on

an architecture-first approach. They have to be structured to support the estimation of a modern

software process. Future cost estimation models need to be based on better primitive units defined

from well understood software engineering notations such as the Unified Modeling Language

(UML).

A next-generation software cost model should explicitly separate architectural engineering from

application model. Next-generation software cost models should estimate large-scale architectures

with economy of scale i.e., the process exponent during the production stage should be less than

1.0. The next generation cost model for architecture - first development process can be summarized

as follows:

Effort = F (TArch, SArch, QArch, PArch) + F (TApp, SApp, QApp, PApp)

MADHAVI PINGILI 89

Time = F (PArch, EffortArch) + F (PApp, Effort App)
where: T = technology parameter (environment automation support)

S = scale parameter (such as use cases, function points, source lines of code)

Q = quality parameter (such as portability, reliability, performance)

P = process parameter (such as maturity, domain experience)

Phases Phases

MADHAVI PINGILI 90

Inception and elaboration Construction ad transitionArchitecture and applications have different

units of mass-scale and size. Scale ismeasured in terms of architecturally significant elements such

as classes, components, processes and nodes. Size is measured in SLOC or megabyte of executable

code. Next generation environments and infrastructures are moving to automate and standardize

many of the management activities, thereby requiring a lower percentage of effort for overhead

activities as scale increases. The two major improvements in next-generation cost estimation

models are.

1, Separation of the engineering stage from the production stage to differentiate between

architectural scale and implementation size.

2, Rigorous design notations such as UML to be more standardized. The automation of the

construction process in next-generation environments is shown below.

MADHAVI PINGILI 91

